Description Usage Arguments Details Value References See Also Examples
Density, distribution function, quantile function and random
generation for the generalized power Weibull(GPW)
distribution with shape parameters alpha
and theta
.
1 2 3 4 | dgp.weibull(x, alpha, theta, log = FALSE)
pgp.weibull(q, alpha, theta, lower.tail = TRUE, log.p = FALSE)
qgp.weibull(p, alpha, theta, lower.tail = TRUE, log.p = FALSE)
rgp.weibull(n, alpha, theta)
|
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
theta |
shape parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x]. |
The generalized power Weibull(GPW) distribution has density
f(x) = α θ x^{α - 1} (1 + x^α)^{θ - 1} exp{1 - (1 + x^α)^θ}; x ≥ 0, α > 0, θ > 0.
where α and θ are the shape
and scale
parameters, respectively.
dgp.weibull
gives the density,
pgp.weibull
gives the distribution function,
qgp.weibull
gives the quantile function, and
rgp.weibull
generates random deviates.
Nikulin, M. and Haghighi, F. (2006). A Chi-squared test for the generalized power Weibull family for the head-and-neck cancer censored data, Journal of Mathematical Sciences, Vol. 133(3), 1333-1341.
Pham, H. and Lai, C.D. (2007). On recent generalizations of the Weibull distribution, IEEE Trans. on Reliability, Vol. 56(3), 454-458.
.Random.seed
about random number; sgp.weibull
for generalized power Weibull(GPW) survival / hazard etc. functions
1 2 3 4 5 6 7 8 9 10 | ## Load data sets
data(repairtimes)
## Maximum Likelihood(ML) Estimates of alpha & theta for the data(repairtimes)
## Estimates of alpha & theta using 'maxLik' package
## alpha.est = 1.566093, theta.est = 0.355321
dgp.weibull(repairtimes, 1.566093, 0.355321, log = FALSE)
pgp.weibull(repairtimes, 1.566093, 0.355321, lower.tail = TRUE, log.p = FALSE)
qgp.weibull(0.25, 1.566093, 0.355321, lower.tail=TRUE, log.p = FALSE)
rgp.weibull(30, 1.566093, 0.355321)
|
[1] 0.2070138740 0.2440767595 0.2794206520 0.2794206520 0.2794206520
[6] 0.2794206520 0.2849294765 0.2849294765 0.2853442606 0.2853442606
[11] 0.2853442606 0.2821716294 0.2821716294 0.2692062920 0.2692062920
[16] 0.2692062920 0.2692062920 0.2608243880 0.2424709841 0.2236623673
[21] 0.2236623673 0.2236623673 0.2236623673 0.1805021754 0.1805021754
[26] 0.1655457668 0.1456365275 0.1339226360 0.1184232753 0.1184232753
[31] 0.1050876164 0.1050876164 0.0806115664 0.0806115664 0.0674350372
[36] 0.0629355450 0.0568757762 0.0498980030 0.0498980030 0.0307692927
[41] 0.0267509810 0.0189686993 0.0180328615 0.0131468632 0.0014120640
[46] 0.0009559889
[1] 0.02747956 0.05017872 0.10319830 0.10319830 0.10319830 0.10319830
[7] 0.13146584 0.13146584 0.16001500 0.16001500 0.16001500 0.18841555
[13] 0.18841555 0.24366448 0.24366448 0.24366448 0.24366448 0.27017289
[19] 0.32052394 0.36713327 0.36713327 0.36713327 0.36713327 0.46785926
[25] 0.46785926 0.50244098 0.54904495 0.57698123 0.61477458 0.61477458
[31] 0.64825145 0.64825145 0.71276779 0.71276779 0.74965507 0.76268556
[37] 0.78063783 0.80195411 0.80195411 0.86494950 0.87930053 0.90866273
[43] 0.91236192 0.93242608 0.98995316 0.99287114
[1] 1.023617
[1] 1.62668888 2.10253685 4.15297318 0.50984076 14.34676683 0.07138013
[7] 7.83713281 0.35866216 2.55440459 7.39642239 0.68911357 4.58826182
[13] 4.56399334 2.11854946 10.45907643 1.13582390 5.07458821 0.19506747
[19] 14.62329045 0.81299358 5.34463254 1.14735900 7.09169131 2.07738396
[25] 9.78279475 8.21376427 0.43097999 17.27012175 0.60348363 3.36325721
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.