abic.loglog: Akaike information criterion (AIC) and Bayesian/ Schwartz...

Description Usage Arguments Value References See Also Examples

View source: R/Loglog.R

Description

The function abic.loglog( ) gives the loglikelihood, AIC and BIC values assuming Loglog distribution with parameters alpha and lambda. The function is based on the invariance property of the MLE.

Usage

1
abic.loglog(x, alpha.est, lambda.est)

Arguments

x

vector of observations

alpha.est

estimate of the parameter alpha

lambda.est

estimate of the parameter lambda

Value

The function abic.loglog( ) gives the loglikelihood, AIC and BIC values.

References

Akaike, H. (1978). A new look at the Bayes procedure, Biometrika, 65, 53-59.

Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging, Cambridge University Press, London.

Konishi., S. and Kitagawa, G.(2008). Information Criteria and Statistical Modeling, Springer Science+Business Media, LLC.

Schwarz, S. (1978). Estimating the dimension of the model, Annals of Statistics, 6, 461-464.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of complexity and fit, Journal of the Royal Statistical Society Series B 64, 1-34.

See Also

qq.loglog for QQ plot and ks.loglog function

Examples

1
2
3
4
5
6
7
## Load data set
data(sys2)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(sys2)
## alpha.est = 0.9058689 lambda.est = 1.0028228

## Values of AIC, BIC and LogLik for the data(sys2) 
abic.loglog(sys2, 0.9058689, 1.0028228)

reliaR documentation built on May 1, 2019, 9:51 p.m.

Related to abic.loglog in reliaR...