| ExpExt | R Documentation |
Density, distribution function, quantile function and random
generation for the Exponential Extension(EE)
distribution with shape parameter alpha and scale parameter lambda.
dexp.ext(x, alpha, lambda, log = FALSE)
pexp.ext(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qexp.ext(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rexp.ext(n, alpha, lambda)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
lambda |
scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
The Exponential Extension(EE) distribution has density
f(x) = \alpha \lambda \left(1+\lambda x\right)^{\alpha -1} \exp
\left\{1-\left(1+\lambda x\right)^{\alpha } \right\} ;\, x\ge 0, \alpha >0, \lambda >0.
where \alpha and \lambda are the shape and scale
parameters, respectively.
dexp.ext gives the density,
pexp.ext gives the distribution function,
qexp.ext gives the quantile function, and
rexp.ext generates random deviates.
Nikulin, M. and Haghighi, F. (2006). A Chi-squared test for the generalized power Weibull family for the head-and-neck cancer censored data, Journal of Mathematical Sciences, Vol. 133(3), 1333-1341.
.Random.seed about random number; sexp.ext for ExpExt survival / hazard etc. functions
## Load data sets
data(sys2)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(sys2)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 1.0126e+01, lambda.est = 1.5848e-04
dexp.ext(sys2, 1.012556e+01, 1.5848e-04, log = FALSE)
pexp.ext(sys2, 1.012556e+01, 1.5848e-04, lower.tail = TRUE, log.p = FALSE)
qexp.ext(0.25, 1.012556e+01, 1.5848e-04, lower.tail=TRUE, log.p = FALSE)
rexp.ext(30, 1.012556e+01, 1.5848e-04)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.