Description Usage Arguments Details Value References See Also Examples
Density, distribution function, quantile function and random
generation for the Exponential Extension(EE)
distribution with shape parameter alpha
and scale parameter lambda
.
1 2 3 4 |
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
lambda |
scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x]. |
The Exponential Extension(EE) distribution has density
f(x) = α λ (1 + λ x)^{α - 1} exp(1 - (1 + λ x)^α); x ≥ 0, α > 0, λ > 0.
where α and λ are the shape
and scale
parameters, respectively.
dexp.ext
gives the density,
pexp.ext
gives the distribution function,
qexp.ext
gives the quantile function, and
rexp.ext
generates random deviates.
Nikulin, M. and Haghighi, F. (2006). A Chi-squared test for the generalized power Weibull family for the head-and-neck cancer censored data, Journal of Mathematical Sciences, Vol. 133(3), 1333-1341.
.Random.seed
about random number; sexp.ext
for ExpExt survival / hazard etc. functions
1 2 3 4 5 6 7 8 9 | ## Load data sets
data(sys2)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(sys2)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 1.0126e+01, lambda.est = 1.5848e-04
dexp.ext(sys2, 1.012556e+01, 1.5848e-04, log = FALSE)
pexp.ext(sys2, 1.012556e+01, 1.5848e-04, lower.tail = TRUE, log.p = FALSE)
qexp.ext(0.25, 1.012556e+01, 1.5848e-04, lower.tail=TRUE, log.p = FALSE)
rexp.ext(30, 1.012556e+01, 1.5848e-04)
|
[1] 0.0016034341 0.0016026915 0.0016018876 0.0016001859 0.0015966736
[6] 0.0015957622 0.0015930911 0.0015906310 0.0015901316 0.0015893959
[11] 0.0015888826 0.0015829253 0.0015805623 0.0015742454 0.0015702469
[16] 0.0015582024 0.0015572926 0.0015554022 0.0015512263 0.0015457092
[21] 0.0015424159 0.0015243792 0.0015206044 0.0015176134 0.0015139889
[26] 0.0015090983 0.0015065204 0.0015030951 0.0014980759 0.0014920416
[31] 0.0014892654 0.0014758276 0.0014669969 0.0014646626 0.0014463334
[36] 0.0014272340 0.0014235726 0.0014126447 0.0014047486 0.0013694814
[41] 0.0013694123 0.0013673491 0.0013528232 0.0013171336 0.0013101955
[46] 0.0013015846 0.0012842465 0.0012773754 0.0012626189 0.0011883935
[51] 0.0011760662 0.0011729231 0.0011468722 0.0011334196 0.0010762535
[56] 0.0010370553 0.0010205022 0.0009820466 0.0009538664 0.0009431923
[61] 0.0009338219 0.0009224668 0.0008885237 0.0008868910 0.0008324184
[66] 0.0008283320 0.0007926056 0.0007832525 0.0007549669 0.0006739418
[71] 0.0006478698 0.0006292521 0.0005326264 0.0005070053 0.0004536306
[76] 0.0004116084 0.0003794694 0.0003306636 0.0003210427 0.0002958279
[81] 0.0002485122 0.0002364447 0.0002337852 0.0002211026 0.0002108954
[86] 0.0001738793
[1] 0.007683515 0.011947669 0.016386018 0.025255819 0.041783961 0.045758549
[7] 0.056808040 0.066311524 0.068172271 0.070874871 0.072734165 0.092939296
[13] 0.100357710 0.118876994 0.129772775 0.159620597 0.161723557 0.166034646
[19] 0.175292473 0.187014524 0.193762106 0.227960689 0.234614006 0.239778990
[25] 0.245918007 0.254004818 0.258181457 0.263643925 0.271477029 0.280641817
[31] 0.284770934 0.304044766 0.316125241 0.319247462 0.342827899 0.365832098
[37] 0.370079808 0.382474283 0.391180099 0.427805344 0.427873817 0.429912705
[43] 0.443976307 0.476567048 0.482609930 0.489988254 0.504456327 0.510053491
[49] 0.521826553 0.576527479 0.584968668 0.587094504 0.604319557 0.612950533
[55] 0.647801553 0.670150870 0.679245341 0.699641979 0.713977609 0.719279897
[61] 0.723878586 0.729382490 0.745400821 0.746155372 0.770535043 0.772303742
[67] 0.787426858 0.791287705 0.802724168 0.833595451 0.842966747 0.849499082
[73] 0.881365390 0.889265909 0.905017662 0.916762986 0.925363452 0.937797547
[79] 0.940159883 0.946212464 0.957025157 0.959667822 0.960243850 0.962959071
[85] 0.965105838 0.972597073
[1] 159.5484
[1] 76.18151 533.79438 550.34297 308.21254 317.17397 417.21090 671.92179
[8] 973.64593 685.79557 443.02469 111.63522 59.56529 325.51133 456.37737
[15] 350.42036 153.00333 557.08346 216.91177 558.21764 993.05607 416.99768
[22] 326.19418 598.37114 183.01135 237.91066 891.16401 201.37094 100.89105
[29] 56.91061 152.94923
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.