Description Usage Arguments Value References See Also Examples
The function abic.logis.exp()
gives the loglikelihood
, AIC
and BIC
values
assuming an Logistic-Exponential(LE) distribution with parameters alpha and lambda.
1 | abic.logis.exp(x, alpha.est, lambda.est)
|
x |
vector of observations |
alpha.est |
estimate of the parameter alpha |
lambda.est |
estimate of the parameter lambda |
The function abic.logis.exp()
gives the loglikelihood
, AIC
and BIC
values.
Akaike, H. (1978). A new look at the Bayes procedure, Biometrika, 65, 53-59.
Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging, Cambridge University Press, London.
Konishi., S. and Kitagawa, G.(2008). Information Criteria and Statistical Modeling, Springer Science+Business Media, LLC.
Schwarz, S. (1978). Estimating the dimension of the model, Annals of Statistics, 6, 461-464.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of complexity and fit, Journal of the Royal Statistical Society Series B 64, 1-34.
pp.logis.exp
for PP
plot and qq.logis.exp
for QQ
plot
1 2 3 4 5 6 7 8 | ## Load data sets
data(bearings)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(bearings)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 2.36754, lambda.est = 0.01059
## Values of AIC, BIC and LogLik for the data(bearings)
abic.logis.exp(bearings, 2.36754, 0.01059)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.