# abic.moew: Akaike information criterion (AIC) and Bayesian information... In reliaR: Package for some probability distributions.

## Description

The function `abic.moew()` gives the `loglikelihood`, `AIC` and `BIC` values assuming an MOEW distribution with parameters alpha and lambda.

## Usage

 `1` ```abic.moew(x, alpha.est, lambda.est) ```

## Arguments

 `x` vector of observations `alpha.est` estimate of the parameter alpha `lambda.est` estimate of the parameter lambda

## Value

The function `abic.moew()` gives the `loglikelihood`, `AIC` and `BIC` values.

## References

Akaike, H. (1978). A new look at the Bayes procedure, Biometrika, 65, 53-59.

Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging, Cambridge University Press, London.

Konishi., S. and Kitagawa, G.(2008). Information Criteria and Statistical Modeling, Springer Science+Business Media, LLC.

Schwarz, S. (1978). Estimating the dimension of the model, Annals of Statistics, 6, 461-464.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of complexity and fit, Journal of the Royal Statistical Society Series B 64, 1-34.

`pp.moew` for `PP` plot and `qq.moew` for `QQ` plot

## Examples

 ```1 2 3 4 5 6 7``` ```## Load data set data(sys2) ## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(sys2) ## alpha.est = 0.3035937, lambda.est = 279.2177754 ## Values of AIC, BIC and LogLik for the data(sys2) abic.moew(sys2, 0.3035937, 279.2177754) ```

### Example output

```\$LogLik
[1] -599.1232

\$AIC
[1] 1202.246

\$BIC
[1] 1207.155
```

reliaR documentation built on May 1, 2019, 9:51 p.m.