Description Usage Arguments Details Value References See Also Examples
Density, distribution function, quantile function and random
generation for the Exponentiated Weibull(EW)
distribution with shape parameters alpha
and theta
.
1 2 3 4 | dexpo.weibull(x, alpha, theta, log = FALSE)
pexpo.weibull(q, alpha, theta, lower.tail = TRUE, log.p = FALSE)
qexpo.weibull(p, alpha, theta, lower.tail = TRUE, log.p = FALSE)
rexpo.weibull(n, alpha, theta)
|
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
theta |
shape parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x]. |
The Exponentiated Weibull(EW) distribution has density
f(x; α, θ) = α θ x^{α - 1} exp{-x^α}{1 - exp(-x^α)}^{θ - 1}; (α, θ) > 0, x > 0
where α and θ are the shape
and scale
parameters, respectively.
dexpo.weibull
gives the density,
pexpo.weibull
gives the distribution function,
qexpo.weibull
gives the quantile function, and
rexpo.weibull
generates random deviates.
Mudholkar, G.S. and Srivastava, D.K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Transactions on Reliability, 42(2), 299-302.
Murthy, D.N.P., Xie, M. and Jiang, R. (2003). Weibull Models, Wiley, New York.
Nassar, M.M., and Eissa, F. H. (2003). On the Exponentiated Weibull Distribution, Communications in Statistics - Theory and Methods, 32(7), 1317-1336.
.Random.seed
about random number; sexpo.weibull
for Exponentiated Weibull(EW) survival / hazard etc. functions
1 2 3 4 5 6 7 8 9 10 | ## Load data sets
data(stress)
## Maximum Likelihood(ML) Estimates of alpha & theta for the data(stress)
## Estimates of alpha & theta using 'maxLik' package
## alpha.est =1.026465, theta.est = 7.824943
dexpo.weibull(stress, 1.026465, 7.824943, log = FALSE)
pexpo.weibull(stress, 1.026465, 7.824943, lower.tail = TRUE, log.p = FALSE)
qexpo.weibull(0.25, 1.026465, 7.824943, lower.tail=TRUE, log.p = FALSE)
rexpo.weibull(30, 1.026465, 7.824943)
|
[1] 0.15535555 0.32433811 0.32623451 0.36714164 0.16973307 0.25309842
[7] 0.22375718 0.29929778 0.31848810 0.25309842 0.07857711 0.38088307
[13] 0.23821739 0.23274151 0.37814691 0.22198276 0.25687482 0.40435163
[19] 0.24561019 0.04849526 0.14852624 0.37798114 0.28375795 0.27988247
[25] 0.20299742 0.28181930 0.36220878 0.33746495 0.28763957 0.23274151
[31] 0.20299742 0.31092214 0.09742125 0.21322902 0.35883653 0.21670644
[37] 0.21670644 0.30317993 0.35712705 0.17575185 0.24561019 0.38898980
[43] 0.35883653 0.35191198 0.38505383 0.31092214 0.31861535 0.40661032
[49] 0.30705567 0.40808426 0.29744629 0.15815433 0.27988247 0.27863777
[55] 0.12125393 0.32052810 0.04800260 0.15815433 0.40139284 0.35468275
[61] 0.23821739 0.34923923 0.06272063 0.02448390 0.38574668 0.35468275
[67] 0.41108127 0.22149497 0.17883686 0.38207513 0.40661032 0.20019017
[73] 0.04032162 0.37033957 0.20446402 0.18348829 0.40661032 0.37814691
[79] 0.23413986 0.08173712 0.40139284 0.00207999 0.15815433 0.37033957
[85] 0.07491453 0.35987976 0.31477639 0.05941018 0.41131239 0.39658549
[91] 0.34923923 0.16191225 0.41131239 0.35987976 0.40931946 0.40602217
[97] 0.29735516 0.30899024 0.41120976 0.16242446
[1] 0.8422438155 0.6164118467 0.6131589785 0.5332998866 0.8259973736
[6] 0.7232126432 0.7613386642 0.6569541706 0.1340486637 0.7232126432
[11] 0.9237928693 0.4996259311 0.7428627315 0.7499269617 0.2112165974
[16] 0.7635673574 0.7181129445 0.2819481154 0.7331865155 0.9537515346
[21] 0.8498398633 0.5072147292 0.6802762496 0.6859126417 0.7869320809
[26] 0.6831041345 0.5442405349 0.5932466175 0.6745622828 0.7499269617
[31] 0.7869320809 0.6386472201 0.9044996578 0.7744468176 0.5514510943
[36] 0.7701475174 0.7701475174 0.6509293851 0.5550309247 0.8190881828
[41] 0.7331865155 0.4765250492 0.5514510943 0.5656668244 0.4881363136
[46] 0.6386472201 0.6260562664 0.4047528930 0.6448270160 0.3022651669
[51] 0.1155616947 0.8391087806 0.6859126417 0.1011551591 0.0251194916
[56] 0.6228605451 0.9542340199 0.8391087806 0.2698605782 0.1745223793
[61] 0.7428627315 0.1674827518 0.0097198419 0.9769728624 0.2264978914
[66] 0.1745223793 0.3350554832 0.0660847221 0.0460665213 0.2188192456
[71] 0.4047528930 0.0555418078 0.9617235113 0.5259249483 0.0575650813
[76] 0.8101081598 0.4047528930 0.2112165974 0.0729196068 0.9205869620
[81] 0.2698605782 0.0001228907 0.8391087806 0.5259249483 0.0124689026
[86] 0.1816684182 0.6323902119 0.9429957431 0.3473925607 0.2538976948
[91] 0.1674827518 0.0392522986 0.3473925607 0.1816684182 0.3843501682
[96] 0.2900522521 0.6599374360 0.6417467844 0.3556181185 0.8343003146
[1] 1.790155
[1] 2.4583289 4.7313768 5.6982148 2.8302478 1.6173978 1.7200807 3.3184794
[8] 1.9733880 2.9305439 1.2556116 1.2311626 2.3605360 2.4232444 1.4300929
[15] 2.5499523 4.0088037 3.1565007 2.6940529 6.5123279 1.2155381 3.7420957
[22] 2.0644640 0.9040087 2.1888215 3.2125522 0.9007149 1.4249401 1.5286497
[29] 2.5812185 3.7376725
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.