Description Usage Arguments Value References See Also Examples
The function abic.exp.power() gives the loglikelihood, AIC and BIC values
assuming Chen distribution with parameters alpha and
lambda. The function is based on the invariance property of the MLE.
1 | abic.exp.power(x, alpha.est, lambda.est)
|
x |
vector of observations |
alpha.est |
estimate of the parameter alpha |
lambda.est |
estimate of the parameter lambda |
The function abic.exp.power() gives the loglikelihood, AIC and BIC values.
Akaike, H. (1978). A new look at the Bayes procedure, Biometrika, 65, 53-59.
Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging, Cambridge University Press, London.
Konishi., S. and Kitagawa, G.(2008). Information Criteria and Statistical Modeling, Springer Science+Business Media, LLC.
Schwarz, S. (1978). Estimating the dimension of the model, Annals of Statistics, 6, 461-464.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of complexity and fit, Journal of the Royal Statistical Society Series B 64, 1-34.
pp.exp.power for PP plot and qq.exp.power for QQ plot
1 2 3 4 5 6 7 8 | ## Load data sets
data(sys2)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(sys2)
## alpha.est = 0.905868898, lambda.est = 0.001531423
## Values of AIC, BIC and LogLik for the data(sys2)
abic.exp.power(sys2, 0.905868898, 0.001531423)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.