Description Usage Arguments Value References See Also Examples
The function abic.flex.weibull()
gives the loglikelihood
, AIC
and BIC
values
assuming an flexible Weibull(FW) distribution with parameters alpha and beta.
1 | abic.flex.weibull(x, alpha.est, beta.est)
|
x |
vector of observations |
alpha.est |
estimate of the parameter alpha |
beta.est |
estimate of the parameter beta |
The function abic.flex.weibull()
gives the loglikelihood
, AIC
and BIC
values.
Akaike, H. (1978). A new look at the Bayes procedure, Biometrika, 65, 53-59.
Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging, Cambridge University Press, London.
Konishi., S. and Kitagawa, G.(2008). Information Criteria and Statistical Modeling, Springer Science+Business Media, LLC.
Schwarz, S. (1978). Estimating the dimension of the model, Annals of Statistics, 6, 461-464.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of complexity and fit, Journal of the Royal Statistical Society Series B 64, 1-34.
pp.flex.weibull
for PP
plot and qq.flex.weibull
for QQ
plot
1 2 3 4 5 6 7 8 | ## Load data sets
data(repairtimes)
## Maximum Likelihood(ML) Estimates of alpha & beta for the data(repairtimes)
## Estimates of alpha & beta using 'maxLik' package
## alpha.est = 0.07077507, beta.est = 1.13181535
## Values of AIC, BIC and LogLik for the data(repairtimes)
abic.flex.weibull(repairtimes, 0.07077507, 1.13181535)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.