# abic.flex.weibull: Akaike information criterion (AIC) and Bayesian information... In reliaR: Package for some probability distributions.

## Description

The function `abic.flex.weibull()` gives the `loglikelihood`, `AIC` and `BIC` values assuming an flexible Weibull(FW) distribution with parameters alpha and beta.

## Usage

 `1` ```abic.flex.weibull(x, alpha.est, beta.est) ```

## Arguments

 `x` vector of observations `alpha.est` estimate of the parameter alpha `beta.est` estimate of the parameter beta

## Value

The function `abic.flex.weibull()` gives the `loglikelihood`, `AIC` and `BIC` values.

## References

Akaike, H. (1978). A new look at the Bayes procedure, Biometrika, 65, 53-59.

Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging, Cambridge University Press, London.

Konishi., S. and Kitagawa, G.(2008). Information Criteria and Statistical Modeling, Springer Science+Business Media, LLC.

Schwarz, S. (1978). Estimating the dimension of the model, Annals of Statistics, 6, 461-464.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of complexity and fit, Journal of the Royal Statistical Society Series B 64, 1-34.

`pp.flex.weibull` for `PP` plot and `qq.flex.weibull` for `QQ` plot
 ```1 2 3 4 5 6 7 8``` ```## Load data sets data(repairtimes) ## Maximum Likelihood(ML) Estimates of alpha & beta for the data(repairtimes) ## Estimates of alpha & beta using 'maxLik' package ## alpha.est = 0.07077507, beta.est = 1.13181535 ## Values of AIC, BIC and LogLik for the data(repairtimes) abic.flex.weibull(repairtimes, 0.07077507, 1.13181535) ```