Description Usage Arguments Value References See Also Examples
The function abic.expo.weibull()
gives the loglikelihood
, AIC
and BIC
values
assuming an Exponentiated Weibull(EW) distribution with parameters alpha and theta.
1 | abic.expo.weibull(x, alpha.est, theta.est)
|
x |
vector of observations |
alpha.est |
estimate of the parameter alpha |
theta.est |
estimate of the parameter theta |
The function abic.expo.weibull()
gives the loglikelihood
, AIC
and BIC
values.
Akaike, H. (1978). A new look at the Bayes procedure, Biometrika, 65, 53-59.
Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging, Cambridge University Press, London.
Konishi., S. and Kitagawa, G.(2008). Information Criteria and Statistical Modeling, Springer Science+Business Media, LLC.
Schwarz, S. (1978). Estimating the dimension of the model, Annals of Statistics, 6, 461-464.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of complexity and fit, Journal of the Royal Statistical Society Series B 64, 1-34.
pp.expo.weibull
for PP
plot and qq.expo.weibull
for QQ
plot
1 2 3 4 5 6 7 8 | ## Load data sets
data(stress)
## Maximum Likelihood(ML) Estimates of alpha & theta for the data(stress)
## Estimates of alpha & theta using 'maxLik' package
## alpha.est =1.026465, theta.est = 7.824943
## Values of AIC, BIC and LogLik for the data(stress)
abic.expo.weibull(stress, 1.026465, 7.824943)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.