R/delta.R

Defines functions plot_factorialscree.spatialdelta plot_factorialscree.default plot_factorialscree plot_spatialscree.spatialdelta plot_spatialscree.default plot_spatialscree plot_factorialcoords.spatialdelta plot_factorialcoords.default plot_factorialcoords localdelta.spatialdelta localdelta.default localdelta factorial_coordinates.spatialdelta factorial_coordinates.default factorial_coordinates plot_moran.spatialdelta plot_moran.default plot_moran plot_spatialcoords.spatialdelta plot_spatialcoords.default plot_spatialcoords cornish_fisher.spatialdelta cornish_fisher.default cornish_fisher as.matrix.adjusted_spatial_weights graph_distance_weights iterative_proportional_fitting_weights metropolis_hastings_weights linearised_diffusive_weights print.summary.spatialdelta summary.spatialdelta spatialdelta

Documented in as.matrix.adjusted_spatial_weights cornish_fisher cornish_fisher.default cornish_fisher.spatialdelta factorial_coordinates factorial_coordinates.default factorial_coordinates.default factorial_coordinates.spatialdelta graph_distance_weights iterative_proportional_fitting_weights linearised_diffusive_weights localdelta localdelta.default localdelta.spatialdelta metropolis_hastings_weights plot_factorialcoords plot_factorialcoords.default plot_factorialcoords.spatialdelta plot_factorialscree plot_factorialscree.default plot_factorialscree.spatialdelta plot_moran plot_moran.default plot_moran.spatialdelta plot_spatialcoords plot_spatialcoords.default plot_spatialcoords.spatialdelta plot_spatialscree plot_spatialscree.default plot_spatialscree.spatialdelta print.summary.spatialdelta spatialdelta summary.spatialdelta

# Copyright 2024 by Roger S. Bivand. 
# doi: 10.1111/gean.12390
# François Bavaud (2024) Measuring and Testing Multivariate Spatial
# Autocorrelation in a Weighted Setting: A Kernel Approach,
# Geographical Analysis (2024) 56, 573-599
spatialdelta <- function(dissimilarity_matrix, adjusted_spatial_weights,
 regional_weights=NULL, alternative="greater") {
    alternative <- match.arg(alternative, c("greater", "less", "two.sided"))
    if (is.null(regional_weights)) {
        if (inherits(adjusted_spatial_weights, "adjusted_spatial_weights"))
            regional_weights <- attr(adjusted_spatial_weights, "regional_weights")
        else stop("regional_weights must be provided")
    }
    stopifnot(all(is.finite(regional_weights)))
    stopifnot(all(regional_weights > 0)) # page 576
    if (sum(regional_weights) != 1) { # page 576
        regional_weights <- regional_weights/sum(regional_weights)
        warning("regional_weights changed to sum to unity")
    }
    n <- length(regional_weights)
    stopifnot(nrow(dissimilarity_matrix) == n)
    stopifnot(ncol(dissimilarity_matrix) == n)
    stopifnot(nrow(adjusted_spatial_weights) == n)
    stopifnot(ncol(adjusted_spatial_weights) == n)
    rnames <- rownames(adjusted_spatial_weights)
    stopifnot(length(rnames) == n)
    E <- diag(regional_weights) %*% adjusted_spatial_weights
    H <- diag(n) - rep(1, times=n) %*% t(regional_weights) # above eq. 15
    B <- -0.5 * (H %*% dissimilarity_matrix %*% t(H)) # eq. 15
    sf <- sqrt(regional_weights)
    dsf <- diag(sf)
    dsf1 <- diag(1/sf)
    Kx <- dsf %*% B %*% dsf # eq. 16
    Kw <- dsf %*% adjusted_spatial_weights %*% dsf1 - tcrossprod(sf) # eq. 21
    trKx <- sum(diag(Kx))
    trKxKx <- sum(diag(Kx %*% Kx))
    trKwKx <- sum(diag(Kw %*% Kx))
    trKwKw <- sum(diag(Kw %*% Kw))
    trKw <- sum(diag(Kw))
    mubar2 <- (trKwKw/(n-1)) - (trKw/(n-1))^2 # p. 591
    lbar2 <- (trKxKx/(n-1)) - (trKx/(n-1))^2 # p. 591
    trKwKwKw <- sum(diag(Kw %*% Kw %*% Kw))
    mubar3 <- (trKwKwKw/(n-1)) - 3*((trKwKw/(n-1))*(trKw/(n-1))) +
        2*((trKw/(n-1))^3) # p. 591
    trKxKxKx <- sum(diag(Kx %*% Kx %*% Kx))
    lbar3 <- trKxKxKx/(n-1) - 3*((trKxKx/(n-1))*(trKx/(n-1))) +
        2*((trKx/(n-1))^3) # p. 591
    trKwKwKwKw <- sum(diag(Kw %*% Kw %*% Kw %*% Kw))
    mubar4 <- (trKwKwKwKw/(n-1)) - 4*((trKwKwKw/(n-1))*(trKw/(n-1))) +
        6*((trKwKw/(n-1))*((trKw/(n-1))^2)) - 3*((trKw/(n-1))^4)
    trKxKxKxKx <- sum(diag(Kx %*% Kx %*% Kx %*% Kx)) # p. 591
    lbar4 <- (trKxKxKxKx/(n-1)) - 4*((trKxKxKx/(n-1))*(trKx/(n-1))) +
        6*((trKxKx/(n-1))*((trKx/(n-1))^2)) - 3*((trKx/(n-1))^4) # p. 591
    d <- trKwKx/trKx # eq. 12 and 26
    RV <- d*(trKx/(trKwKw*trKxKx)) # eq. 27
    trKw <- sum(diag(Kw))
    Ed <- trKw/(n-1) # eq. 36 
    Vd1 <- 2/((n-2)*((n-1)^2)*(n+1))
    Vd2 <- (n-1)*trKwKw - trKw^2
    Vd3 <- (((n-1)*trKxKx) - trKx^2)/(trKx^2)
    Vd <- Vd1*Vd2*Vd3 # eq. 37 
    VI <- (2/(n^2 - 1))*(sum(diag(adjusted_spatial_weights %*%
        adjusted_spatial_weights)) - 
        1 -((sum(diag(adjusted_spatial_weights)) - 1)^2/(n-1)))
    Vx <- ((1/(n-2))*(((n-1)/(trKx^2/trKxKx)) - 1))
    Vd0 <- VI*Vx # eq. 38
    skewd1 <- sqrt(8*((n-2)*(n+1)))/((n-3)*(n+3))
    alphamu <- (mubar3/(mubar2^(3/2)))
    alphalambda <- (lbar3/(lbar2^(3/2)))
    skewd2 <- alphamu * alphalambda
    skewd <- skewd1*skewd2 # eq. 39
    gammamu <- (mubar4/mubar2^2) - 3
    gammalambda <- (lbar4/lbar2^2) - 3
    kurtd1 <- ((3*(n-2)*(n+1)) / ((n-4)*(n-3)*(n-1)*n*(n+3)*(n+5)))
    kurtd2 <- (4*(n^2 - n +2)*gammamu*gammalambda) +
        (4*n^2 - 8*n + 52)*(gammamu + gammalambda)
    kurtd3 <- (4*(5*n^3 - 57*n^2 + 25*n + 169)/((n-2)*(n-1)))
    kurtd <- kurtd1 * (kurtd2 - kurtd3) # eq. 40
    std_d <- (d-Ed)/sqrt(Vd) # eq. 41
    if (alternative == "two.sided") 
        pv_d <- 2 * pnorm(abs(std_d), lower.tail=FALSE)
    else if (alternative == "greater")
        pv_d <- pnorm(std_d, lower.tail=FALSE)
    else pv_d <- pnorm(std_d)
    names(std_d) <- "Standard deviate"
    vec <- c(d, Ed, Vd, skewd, kurtd)
    names(vec) <- c("delta", "Expectation", "Variance", "Skewness",
        "Excess Kurtosis")
    method <- "Bavaud delta normal approximation"
    data.name <- paste(deparse(substitute(dissimilarity_matrix)), "\nweights:",
	deparse(substitute(adjusted_spatial_weights)))
    res <- list(statistic=std_d, p.value=pv_d, estimate=vec,
        alternative=alternative, method=method, data.name=data.name)
    attr(res, "Kx") <- Kx
    attr(res, "Kw") <- Kw
    attr(res, "regional_weights") <- regional_weights
    attr(res, "adjusted_spatial_weights") <- adjusted_spatial_weights
    attr(res, "B") <- B
    attr(res, "VI") <- VI
    attr(res, "Vx") <- Vx
    attr(res, "Vd0") <- Vd0
    attr(res, "alphamu") <- alphamu
    attr(res, "alphalambda") <- alphalambda
    attr(res, "gammamu") <- gammamu
    attr(res, "gammalambda") <- gammalambda
    attr(res, "rnames") <- rnames
    class(res) <- c("htest", "spatialdelta")
    res

}

summary.spatialdelta <- function(object, ...) {
# Tab. 2
    n <- length(attr(object, "regional_weights"))
    Kx <- attr(object, "Kx")
# features kernels
    lambdabar <- sum(diag(Kx))/(n - 1)
    nu <- sum(diag(Kx))^2 / sum(diag(Kx %*% Kx)) # Eq. 42
    kappa <- attr(object, "Vx") # Eq. 38
    alphalambda <- attr(object, "alphalambda")
    gammalambda <- attr(object, "gammalambda")
# spatial weights kernels
    mubar <- unname(object$estimate["Expectation"]) # Eq. 36
    varI <- attr(object, "VI") # Eq. 38
    alphamu <- attr(object, "alphamu")
    gammamu <- attr(object, "gammamu")
    res <- list(htest=object, lambdabar=lambdabar, nu=nu, kappa=kappa,
        alphalambda=alphalambda, gammalambda=gammalambda, mubar=mubar,
        varI=varI, alphamu=alphamu, gammamu=gammamu)
    class(res) <- c("summary.spatialdelta", class(object))
    res
}

print.summary.spatialdelta <- function(x, digits=getOption("digits"), ...) {
# Tab. 2
    htest <- x[[1]]
    print(htest, digits=digits)
    dn <- unlist(strsplit(htest$data.name, " \nweights: "))
    cat("\nFeatures kernels: ", dn[1], "\n")
    print(unlist(x[2:6]), digits=digits)
    cat("\nSpatial weights kernels: ", dn[2], "\n")
    print(unlist(x[7:10]), digits=digits)
    invisible(x)
}

linearised_diffusive_weights <- function(adjacency_matrix, regional_weights, t_choice=2) { 
    stopifnot(all(is.finite(regional_weights)))
    stopifnot(all(regional_weights > 0))
    if (sum(regional_weights) != 1) {
        regional_weights <- regional_weights/sum(regional_weights)
        warning("regional_weights changed to sum to unity")
    }
    n <- length(regional_weights)
    stopifnot(nrow(adjacency_matrix) == n)
    stopifnot(ncol(adjacency_matrix) == n)
    rnames <- rownames(adjacency_matrix)
    if (is.null(rnames)) rnames <- as.character(1:length(regional_weights))
    stopifnot(length(rnames) == length(regional_weights))
    rS <- rowSums(adjacency_matrix)
    n <- length(rS)
    LA <- (diag(rS) - adjacency_matrix) # eq. 7
    dsf <- diag(1/sqrt(regional_weights))
    lA <- dsf %*% LA %*% dsf # eq. 7
    if (t_choice == 2) t <- 1/max(eigen(lA)$values) # below eq. 21
    else if (t_choice == 1) t <- min(regional_weights/rS) # below eq. 8
    else stop("t_choice 1 or 2")
    res <- diag(n) - t*(diag(1/regional_weights) %*% 
        (diag(rS) - adjacency_matrix)) # eq. 8
    rownames(res) <- rnames
    colnames(res) <- rnames
    attr(res, "t") <- t
    attr(res, "regional_weights") <- regional_weights
    class(res) <- c("adjusted_spatial_weights", class(res))
    res
}

metropolis_hastings_weights <- function(adjacency_matrix, regional_weights) {
    stopifnot(all(is.finite(regional_weights)))
    stopifnot(all(regional_weights > 0))
    if (sum(regional_weights) != 1) {
        regional_weights <- regional_weights/sum(regional_weights)
        warning("regional_weights changed to sum to unity")
    }
    n <- length(regional_weights)
    stopifnot(nrow(adjacency_matrix) == n)
    stopifnot(ncol(adjacency_matrix) == n)
    rnames <- rownames(adjacency_matrix)
    if (is.null(rnames)) rnames <- as.character(1:length(regional_weights))
    stopifnot(length(rnames) == length(regional_weights))
    rS <- rowSums(adjacency_matrix)
    P <- diag(1/rS) %*% adjacency_matrix
    fP <- diag(regional_weights) %*% P
    G <- pmin(fP, t(fP))
    E <- diag(regional_weights - rowSums(G)) + G
    res <- diag(1/regional_weights) %*% E
    rownames(res) <- rnames
    colnames(res) <- rnames
    attr(res, "regional_weights") <- regional_weights
    class(res) <- c("adjusted_spatial_weights", class(res))
    res
}

iterative_proportional_fitting_weights <- function(adjacency_matrix, regional_weights, g=0.001, iter=1000, tol=1e-10, tol.margins=1e-10, print=FALSE) {
    stopifnot(all(is.finite(regional_weights)))
    stopifnot(all(regional_weights > 0))
    if (sum(regional_weights) != 1) {
        regional_weights <- regional_weights/sum(regional_weights)
        warning("regional_weights changed to sum to unity")
    }
    n <- length(regional_weights)
    stopifnot(nrow(adjacency_matrix) == n)
    stopifnot(ncol(adjacency_matrix) == n)
    if (!requireNamespace("mipfp", quietly=TRUE)) {
        warning("The mipfp package is required for this method,\n returning Metropolis-Hastings weights")
        return(metropolis_hastings_weights(adjacency_matrix, regional_weights))
    }
    rnames <- rownames(adjacency_matrix)
    if (is.null(rnames)) rnames <- as.character(1:length(regional_weights))
    stopifnot(length(rnames) == length(regional_weights))
    res0 <- mipfp::Ipfp(seed=(adjacency_matrix+g), target.list=list(1, 2),
        target.data=list(regional_weights, regional_weights), iter=iter,
        tol=tol, tol.margins=tol.margins, print=print)
    res <- diag(1/regional_weights) %*% res0$x.hat
    rownames(res) <- rnames
    colnames(res) <- rnames
    attr(res, "g") <- g
    attr(res, "regional_weights") <- regional_weights
    class(res) <- c("adjusted_spatial_weights", class(res))
    res
}

graph_distance_weights <- function(adjacency_matrix, regional_weights, c=NULL) {
    stopifnot(all(is.finite(regional_weights)))
    stopifnot(all(regional_weights > 0))
    if (sum(regional_weights) != 1) {
        regional_weights <- regional_weights/sum(regional_weights)
        warning("regional_weights changed to sum to unity")
    }
    n <- length(regional_weights)
    stopifnot(nrow(adjacency_matrix) == n)
    stopifnot(ncol(adjacency_matrix) == n)
    if (!requireNamespace("igraph", quietly=TRUE)) {
        warning("The igraph package is required for this method,\n returning Metropolis-Hastings weights")
        return(metropolis_hastings_weights(adjacency_matrix, regional_weights))
    }
    rnames <- rownames(adjacency_matrix)
    if (is.null(rnames)) rnames <- as.character(1:length(regional_weights))
    stopifnot(length(rnames) == length(regional_weights))
    D <- igraph::distances(igraph::graph_from_adjacency_matrix(adjacency_matrix))
    H <- diag(n) - rep(1, times=n) %*% t(regional_weights) # above eq. 15
    B <- -0.5 * (H %*% D %*% t(H)) # eq. 15
    c1 <- -1/min(c(B))
    if (is.null(c)) c <- c1
    else {
        if (c <= 0 || c > c1) stop("c out of range")
    }
    res <- (1 + (c*B)) %*% diag(regional_weights) # eq. 33
    rownames(res) <- rnames
    colnames(res) <- rnames
    attr(res, "regional_weights") <- regional_weights
    class(res) <- c("adjusted_spatial_weights", class(res))
    res
}

as.matrix.adjusted_spatial_weights <- function(x, ...) {
    class(x) <- c("matrix", "array")
    x
}

cornish_fisher <- function(x, ...) {
  UseMethod("cornish_fisher")
}

cornish_fisher.default <- function(x, ...) {
  stop("x not a spatialdelta object")
}

cornish_fisher.spatialdelta <- function(x, ...) {
    s <- unname(x$estimate[4])
    k <- unname(x$estimate[5])
    s2 <- s^2
    k8 <- k/8
    dom <- s2/9 - 4*(k8-(s2/6))*(1-k8-((5*s2)/36)) 
# amedee-manesmeetal:19 p. 446, eq. 24
    if (dom > 0) {
        warning("domain exceeded: object returned unaltered")
        return(x)
    }
    z <- unname(x$statistic)
    res0 <- (s/6)*((z^2) - 1)
    res1 <- (k/24)*((z^3) - 3*z)
    res2 <- ((s^2)/36)*(2*(z^3) - 5*z)
    res <- res0 + res1 - res2 # eq. 45
# amedee-manesmeetal:19 p. 427, eq. 4
# dasgupta:08 p. 193
    alternative <- x$alternative
    std_d <- ifelse(z <= 0, z + res, z - res)
    if (alternative == "two.sided") 
        pv_d <- 2 * pnorm(abs(std_d), lower.tail=FALSE)
    else if (alternative == "greater")
        pv_d <- pnorm(std_d, lower.tail=FALSE)
    else pv_d <- pnorm(std_d)
    x$statistic <- std_d
    x$p.value <- pv_d
    names(x$statistic) <- paste0(names(x$statistic),
        " (Cornish-Fisher corrected)")
    x$method <- "Bavaud delta under the Cornish-Fisher correction"
    x
}

plot_spatialcoords <- function(x, ...) {
  UseMethod("plot_spatialcoords")
}

plot_spatialcoords.default <- function(x, ...) {
  stop("x not a spatialdelta object")
}

plot_spatialcoords.spatialdelta <- function(x, cols=c(1L, 2L), mult=c(1, 1),
    power=1L, fmult=NULL, names=attr(x, "rnames"), bg=1, pos=3, cex=0.6,
    largest=NULL, ...) {
# Fig. 1
    cols <- as.integer(cols)
    stopifnot(length(cols) == 2L)
    stopifnot(length(mult) == 2L)
    regional_weights <- attr(x, "regional_weights")
    if (is.null(names)) names <- as.character(1:length(regional_weights))
    stopifnot(length(names) == length(regional_weights))
    dsf1 <- diag(1/sqrt(regional_weights))
    Kw <- attr(x, "Kw")
# Fig. 4
    power <- as.integer(power)
    stopifnot(is.integer(power))
    stopifnot(power > 0)
    if (power > 1L) {
        res <- Kw
        for (k in 2:power) res <- res %*% Kw
        Kw <- res
    }
    Kw_eig <- eigen(Kw) # eq. 23
    X_hat <- dsf1 %*% Kw_eig$vectors %*% diag(sqrt(abs(Kw_eig$values))) # eq. 24
    stopifnot(all(cols <= ncol(X_hat)))
    X <- mult[1]*X_hat[, cols[1]]
    Y <- mult[2]*X_hat[, cols[2]]
    plot(X, Y, type="n", xlab=paste0("spatial coordinate ", cols[1]),
        ylab=paste0("spatial coordinate ", cols[2]), ...)
    if (is.null(fmult)) {
        rX <- diff(range(X))
        rf <- diff(range(regional_weights))
        fmult <- (0.02*rX)/rf
    }
    mf <- regional_weights*fmult
    if (!is.null(largest)) {
        stopifnot(is.integer(largest))
        stopifnot(length(largest) == 1L)
        stopifnot(largest > 0L)
        stopifnot(largest <= length(mf))
        o <- order(mf, decreasing=TRUE)
        names1 <- character(length(names))
        for (i in seq(along=names1)) 
            names1[i] <- ifelse(o[i] <= largest, names[i], "")
        names <- names1
    }
    symbols(X, Y, circles=mf, bg=bg, add=TRUE, inches=FALSE)
    text(X, Y, names, pos=pos, cex=cex)
    abline(h=0, v=0, lty=2)
    invisible(list(X=X, Y=Y, circles=mf, names=names))
}

plot_moran <- function(x, y, ...) {
  UseMethod("plot_moran")
}

plot_moran.default <- function(x, y, ...) {
  stop("x not a spatialdelta object")
}

plot_moran.spatialdelta <- function(x, y, fmult=NULL, names=attr(x, "rnames"),
    bg=1, pos=3, cex=0.6, largest=NULL, ...) {
# Fig. 3 (+ fig. 2)
    regional_weights <- attr(x, "regional_weights")
    if (is.null(names)) names <- as.character(1:length(regional_weights))
    stopifnot(length(names) == length(regional_weights))
    stopifnot(is.numeric(y))
    stopifnot(length(y) == length(regional_weights))
    lw <- mat2listw(attr(x, "adjusted_spatial_weights"),  style="B", row.names=names)
    ly <- lag.listw(lw, y)
    a <- lm(ly ~ y)
    yn <- deparse(substitute(y))
    plot(y, ly, type="n", xlab=paste0(yn, " (",
        formatC(coef(a)[2], format="f", digits=4), ")"),
        ylab=paste0("lagged ", yn), ...)
    if (is.null(fmult)) {
        rX <- diff(range(y))
        rf <- diff(range(regional_weights))
        fmult <- (0.02*rX)/rf
    }
    mf <- regional_weights*fmult
    if (!is.null(largest)) {
        stopifnot(is.integer(largest))
        stopifnot(length(largest) == 1L)
        stopifnot(largest > 0L)
        stopifnot(largest <= length(mf))
        o <- order(mf, decreasing=TRUE)
        names1 <- character(length(names))
        for (i in seq(along=names1)) 
            names1[i] <- ifelse(o[i] <= largest, names[i], "")
        names <- names1
    }
    symbols(y, ly, circles=mf, bg=bg, add=TRUE, inches=FALSE)
    text(y, ly, names, pos=pos, cex=cex)
    abline(a=a)
    invisible(list(y=y, ly=ly, circles=mf, names=names))
}

factorial_coordinates <- function(x) {
  UseMethod("factorial_coordinates")
}

factorial_coordinates.default <- function(x) {
  stop("x not a spatialdelta object")
}

factorial_coordinates.spatialdelta <- function(x) {
# Fig. 2
    stopifnot(inherits(x, "spatialdelta"))
    dsf1 <- diag(1/sqrt(attr(x, "regional_weights")))
    Kx_eig <- eigen(attr(x, "Kx")) # eq. 18
    dsf1 %*% Kx_eig$vectors %*% diag(sqrt(abs(Kx_eig$values))) # eq. 19
}

localdelta <- function(x, ...) {
  UseMethod("localdelta")
}

localdelta.default <- function(x, ...) {
  stop("x not a spatialdelta object")
}


localdelta.spatialdelta <- function(x, names=attr(x, "rnames"), ...) {
    stopifnot(inherits(x, "spatialdelta"))
    Kx_eig <- eigen(attr(x, "Kx")) # eq. 18
    di <- (1/sum(Kx_eig$values))*diag(attr(x, "adjusted_spatial_weights") %*% attr(x, "B")) # eq. 30
    if (is.null(names)) names <- as.character(1:length(di))
    stopifnot(length(names) == length(di))
    names(di) <- names
    di
}


plot_factorialcoords <- function(x, ...) {
  UseMethod("plot_factorialcoords")
}

plot_factorialcoords.default <- function(x, ...) {
  stop("x not a spatialdelta object")
}


plot_factorialcoords.spatialdelta <- function(x, cols=c(1L, 2L),
    mult=c(1, 1), fmult=NULL, names=attr(x, "rnames"), bg=1, pos=3, cex=0.6,
    largest=NULL, ...) {
# Fig. 5 left, not right
    cols <- as.integer(cols)
    stopifnot(length(cols) == 2L)
    stopifnot(length(mult) == 2L)
    regional_weights <- attr(x, "regional_weights")
    if (is.null(names)) names <- as.character(1:length(regional_weights))
    stopifnot(length(names) == length(regional_weights))
    x_tilde <- factorial_coordinates(x)
    stopifnot(all(cols <= ncol(x_tilde)))
    X <- mult[1]*x_tilde[, cols[1]]
    Y <- mult[2]*x_tilde[, cols[2]]
    plot(X, Y, type="n", xlab=paste0("factorial coordinate ", cols[1]),
        ylab=paste0("factorial coordinate ", cols[2]), ...)
    if (is.null(fmult)) {
        rX <- diff(range(Re(X)))
        rf <- diff(range(regional_weights))
        fmult <- (0.02*rX)/rf
    }
    mf <- regional_weights*fmult
    if (!is.null(largest)) {
        stopifnot(is.integer(largest))
        stopifnot(length(largest) == 1L)
        stopifnot(largest > 0L)
        stopifnot(largest <= length(mf))
        o <- order(mf, decreasing=TRUE)
        names1 <- character(length(names))
        for (i in seq(along=names1)) 
            names1[i] <- ifelse(o[i] <= largest, names[i], "")
        names <- names1
    }
    symbols(X, Y, circles=mf, bg=bg, add=TRUE, inches=FALSE)
    text(X, Y, names, pos=pos, cex=cex)
    abline(h=0, v=0, lty=2)
    invisible(list(X=X, Y=Y, circles=mf, names=names))
}


plot_spatialscree <- function(x, ...) {
  UseMethod("plot_spatialscree")
}

plot_spatialscree.default <- function(x, ...) {
  stop("x not a spatialdelta object")
}


plot_spatialscree.spatialdelta <- function(x, lwd=2, ...) {
# Fig. 8
    e <- sort(Re(eigen(attr(x, "adjusted_spatial_weights"), only.values=TRUE)$values),
        decreasing=TRUE)
    plot(e, type="n", ylab="Eigenvalues", xlab="", ...)
    zero <- rep(0, length(e))
    n <- 1:length(e)
    segments(n, e, n, zero, lwd=lwd)
    invisible(e)
}

plot_factorialscree <- function(x, ...) {
  UseMethod("plot_factorialscree")
}

plot_factorialscree.default <- function(x, ...) {
  stop("x not a spatialdelta object")
}


plot_factorialscree.spatialdelta <- function(x, ...) {
# Fig. 7
    e <- sort(Re(eigen(attr(x, "Kx"), only.values=TRUE)$values),
        decreasing=TRUE)
    plot(e, type="n", ylab="Eigenvalues", xlab="", ...)
    zero <- rep(0, length(e))
    n <- 1:length(e)
    segments(n, e, n, zero, lwd=2)
    invisible(e)
}

Try the spdep package in your browser

Any scripts or data that you put into this service are public.

spdep documentation built on June 10, 2025, 9:07 a.m.