inst/ubinc/templates/r_components.R

<COMMENTS>

system_fetch_cfg = function(){
#
# This function returns a list that stores all of the information about the
# system including parameter values, system indices used, initial condition
# assignments, etc.
#

#Creating the cfg variable
cfg = list();

c_libfile_base = "<MODEL_PREFIX>"


# Initializing the top level elements of cfg
cfg[["options"]]       = list(mi                  = list(),
                              misc                = list(),
                              time_scales         = list(),
                              inputs              = list(),
                              simulation_options  = list(),
                              stochastic          = list(),
                              logging             = list())
                       
cfg[["parameters"]]    = list(sets        = list(),
                              matrix      = NULL,
                              current_set = NULL,
                              values      = NULL)

cfg[["titration"]]     = list(titrate = NULL,
                              times   = c(),
                              rules   = list())

cfg[["iiv"]]           = list(sets        = list(), 
                              current_set = NULL,
                              iivs        = list(),
                              parameters  = list(),
                              values      = NULL)

cfg[["estimation"]]    = list(options        = list(),
                              parameters     = list(),
                              objective_type = list(),
                              mi             = list())


cfg[["reporting"]]                    = list(meta_pptx      = list(),
                                             meta_docx      = list(),
                                             enabled        = FALSE)
                                    
cfg[["reporting"]][["meta_pptx"]]     = 
                         list(title          = list(),
                              section        = list(),
                              content        = list(),
                              two_col        = list(),
                              md_def         = list())

cfg[["reporting"]][["meta_docx"]]     = 
                         list(ph_content     = list(),
                              styles         = list(),
                              captions       = list(),
                              md_def         = list())

cfg[["ve"]]            = list()


# JMH initialize the following:
# cfg[["data"]]
# cfg[["cohorts"]]


# storing the location of the temporary directory and the distribution type
cfg[["options"]][["misc"]][["temp_directory"]] = '<TEMP_DIRECTORY>'
cfg[["options"]][["misc"]][["distribution"]]   = '<DISTRIBUTION>'
cfg[["options"]][["misc"]][["system_file"]]    = '<SYSTEM_FILE>'


# storing the base file name of the compiled C file
cfg[["options"]][["misc"]][["c_libfile_base"]] = c_libfile_base

# Finding the location of the template directory
if(cfg[["options"]][["misc"]][["distribution"]]  == "stand alone"){
   cfg[["options"]][["misc"]][["templates"]]      = file.path(getwd(), "library", "templates")
} else {
  package_dir                = system.file("", package="ubiquity")
  cfg[["options"]][["misc"]][["templates"]] = file.path(package_dir, "ubinc", "templates")
}

# By default we will indicate that we're running at the 
# scripting level. This will be altered at the Shiny App level
cfg[["options"]][["misc"]][["operating_environment"]] = "script"

# defaulting to integrating with r file
#cfg[["options"]][["simulation_options"]][["integrate_with"]]  = "r-file"

# default simulation options
cfg[["options"]][["simulation_options"]] =
           list(parallel           = "No",            # No parallelization
                compute_cores      = 1,
                integrate_with     = "r-file",        # Integrating with R file
                initial_conditions = NA,              # No specified initial conditions
                solver_opts         = list())


# If the library has been loaded we switch to C
if(is.null(getLoadedDLLs()[[c_libfile_base]]) == FALSE){
  if(getLoadedDLLs()[[c_libfile_base]][["dynamicLookup"]] == TRUE){
    cfg[["options"]][["simulation_options"]][["integrate_with"]]  = "c-file"
  }
}


# defaulting to no specified initial condition
#cfg[["options"]][["simulation_options"]][["initial_conditions"]] = NA   


# System parameter information
<FETCH_SYS_PARAMS>

# Static secondary parameters
<FETCH_SYS_SSP>

# Dynamic secondary parameters
<FETCH_SYS_DSP>

# Indices mapping state, parameter, etc. names
# to their index in the different vectors

<FETCH_SYS_INDICES>

<FETCH_SYS_INDICES_ODE_OUTPUT>

# Parameter Sets
<FETCH_SYS_PSETS>

# Interindiviudal Varability Information
<FETCH_SYS_IIV>

# Variance Equations
<FETCH_SYS_VE>  

<FETCH_SYS_INFUSIONS>

<FETCH_SYS_COVARIATES>


# identifying that the current set is the default
cfg[["parameters"]][["current_set"]] = "default";

# Nonzero initial conditions
<FETCH_SYS_IC>   

# timescale information
<FETCH_SYS_TS>       

# data set 
<FETCH_SYS_DATA>

# bolus inputs
<FETCH_SYS_BOLUS>

# misc options
<FETCH_SYS_MISC>

# Defaulting output times to gui output times
cfg[["options"]][["simulation_options"]][["output_times"]] =  
           eval(parse(text=cfg[["options"]][["misc"]][["output_times"]]))



<FETCH_SYS_OPTIONS>


# titration options
cfg[["titration"]][["titrate"]] = FALSE
cfg[["titration"]][["times"]]   = c()     # vector of times where titration can occur
cfg[["titration"]][["rules"]]   = list()  # titration rules


# default stochastic options
cfg[["options"]][["stochastic"]] =
           list(nsub             = 100,
                seed             = 8675309,
                ci               = 95,
                ponly            = FALSE,
                sub_file         = NULL,
                sub_file_sample  = "with replacement")

# default logging options
cfg[["options"]][["logging"]] = 
           list(enabled   = TRUE,
                file      = file.path(cfg[["options"]][["misc"]][["temp_directory"]],"ubiquity_log.txt"),
                timestamp = TRUE ,
                ts_str    = "%Y-%m-%d %H:%M:%S",
                debug     = FALSE,
                verbose   = TRUE)

# default estimation options
cfg[["estimation"]][["options"]] = 
           list(observation_function   = "system_od_general",
                optimizer              = "optim",       
                method                 = "Nelder-Mead",
                control                = list(trace=TRUE, REPORT=10))

#--------------------------------------------------------------------
# default reporting options for powerpoint
# 
# Set sub_title fields to NULL if they do not exist in the template
#
# this is the information the title slide                         
cfg[["reporting"]][["meta_pptx"]][["title"]][["layout"]]$general                      = "title_slide"
cfg[["reporting"]][["meta_pptx"]][["title"]][["master"]]$general                      = "Office Theme"             
cfg[["reporting"]][["meta_pptx"]][["title"]][["type"]]$title                          = 'ctrTitle'
cfg[["reporting"]][["meta_pptx"]][["title"]][["type"]]$sub_title                      = 'subTitle'
cfg[["reporting"]][["meta_pptx"]][["title"]][["indices"]]$title                       = 3
cfg[["reporting"]][["meta_pptx"]][["title"]][["indices"]]$sub_title                   = 4
cfg[["reporting"]][["meta_pptx"]][["title"]][["ph_labels"]]$title                     = "Title 1"
cfg[["reporting"]][["meta_pptx"]][["title"]][["ph_labels"]]$sub_title                 = "Subtitle 2" 
                                                                                   
# this is the information the section title slide                                   
cfg[["reporting"]][["meta_pptx"]][["section"]][["layout"]]$general                    = "section_slide"
cfg[["reporting"]][["meta_pptx"]][["section"]][["master"]]$general                    = "Office Theme"             
cfg[["reporting"]][["meta_pptx"]][["section"]][["type"]]$title                        = 'ctrTitle'
cfg[["reporting"]][["meta_pptx"]][["section"]][["type"]]$sub_title                    = 'subTitle'
cfg[["reporting"]][["meta_pptx"]][["section"]][["indices"]]$title                     = 3
cfg[["reporting"]][["meta_pptx"]][["section"]][["indices"]]$sub_title                 = 4
cfg[["reporting"]][["meta_pptx"]][["section"]][["ph_labels"]]$title                   = "Title 1"
cfg[["reporting"]][["meta_pptx"]][["section"]][["ph_labels"]]$sub_title               = "Subtitle 2"
                                                               
# These contain the mapping information for content in the template
# The main dimensions are:
# units = inches, height = 5.0, width = 9.5                    
# Text content                                                   
cfg[["reporting"]][["meta_pptx"]][["content"]][["layout"]]$general                    = "content_text"   
cfg[["reporting"]][["meta_pptx"]][["content"]][["master"]]$general                    = "Office Theme"             
cfg[["reporting"]][["meta_pptx"]][["content"]][["indices"]]$content_body              = 3 
cfg[["reporting"]][["meta_pptx"]][["content"]][["indices"]]$content_sub_title         = 2 
cfg[["reporting"]][["meta_pptx"]][["content"]][["ph_labels"]]$content_body            = "Content Placeholder 2"
cfg[["reporting"]][["meta_pptx"]][["content"]][["ph_labels"]]$content_sub_title       = "Content Placeholder 10" 
                                                                
# List content                                                  
cfg[["reporting"]][["meta_pptx"]][["content"]][["layout"]]$list                       = "content_list"
cfg[["reporting"]][["meta_pptx"]][["content"]][["master"]]$list                       = "Office Theme"             
cfg[["reporting"]][["meta_pptx"]][["content"]][["indices"]]$list_body                 = 2
cfg[["reporting"]][["meta_pptx"]][["content"]][["indices"]]$list_sub_title            = 3 
cfg[["reporting"]][["meta_pptx"]][["content"]][["ph_labels"]]$list_body               = "Content Placeholder 2"
cfg[["reporting"]][["meta_pptx"]][["content"]][["ph_labels"]]$list_sub_title          = "Content Placeholder 10"
                                                                
                                                                
                                                                
# Two column slide options (with headers)                       
# Each of the larger placeholders have dimensions of:           
# units = inches, height = 4.41, width = 4.65                   
# Two column list with headers                                  
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["layout"]]$list_head                  = "two_content_header_list"
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["master"]]$list_head                  = "Office Theme"             
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$list_head_sub_title       = 1
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$list_head_left_title      = 6 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$list_head_left            = 5 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$list_head_right_title     = 4 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$list_head_right           = 3 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$list_head_sub_title     = "Content Placeholder 10"
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$list_head_left_title    = "Text Placeholder 2" 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$list_head_left          = "Content Placeholder 2" 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$list_head_right_title   = "Text Placeholder 4"
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$list_head_right         = "Content Placeholder 3"

# Two column text with headers
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["layout"]]$text_head                  = "two_content_header_text"
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["master"]]$text_head                  = "Office Theme"             
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$text_head_sub_title       = 6
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$text_head_left_title      = 2 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$text_head_left            = 3 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$text_head_right_title     = 1 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$text_head_right           = 4 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$text_head_sub_title     = "Content Placeholder 10"
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$text_head_left_title    = "Text Placeholder 2" 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$text_head_left          = "Content Placeholder 2" 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$text_head_right_title   = "Text Placeholder 4" 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$text_head_right         = "Content Placeholder 3" 


# Each place holder has dimensions of:
# units = inches, height = 5.08, width = 4.65
# Two column lists (no headers)
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["layout"]]$list                       = "two_content_list"
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["master"]]$list                       = "Office Theme"             
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$list_sub_title            = 2 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$list_left                 = 3 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$list_right                = 4 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$list_sub_title          = "Content Placeholder 10" 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$list_left               = "Content Placeholder 2" 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$list_right              = "Content Placeholder 3" 
                                                                
# Two column text (no headers)                                  
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["layout"]]$text                       = "two_content_text"
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["master"]]$text                       = "Office Theme"             
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$text_sub_title            = 4 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$text_left                 = 3 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["indices"]]$text_right                = 1 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$text_sub_title          = "Content Placeholder 10" 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$text_left               = "Content Placeholder 2" 
cfg[["reporting"]][["meta_pptx"]][["two_col"]][["ph_labels"]]$text_right              = "Content Placeholder 3" 

# MD format for tables
# Table_Labels is the footers and headers while Table is the defaults for the
# body of the table
cfg[["reporting"]][["meta_pptx"]][["md_def"]][["Table_Labels"]] = list(
        color          = "black",
        font.size      = 11,
        bold           = TRUE, 
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Helvetica",
        vertical.align = "baseline",
        shading.color  = "transparent")

cfg[["reporting"]][["meta_pptx"]][["md_def"]][["Table"]] = list(
        color          = "black",
        font.size      = 11,
        bold           = FALSE,
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Helvetica",
        vertical.align = "baseline",
        shading.color  = "transparent")



#--------------------------------------------------------------------
# default reporting options for Word
cfg[["reporting"]][["meta_docx"]][["ph_content"]]$HEADERLEFT$location                = "header"
cfg[["reporting"]][["meta_docx"]][["ph_content"]]$HEADERLEFT$content                 = ""
cfg[["reporting"]][["meta_docx"]][["ph_content"]]$HEADERRIGHT$location               = "header"
cfg[["reporting"]][["meta_docx"]][["ph_content"]]$HEADERRIGHT$content                = ""
cfg[["reporting"]][["meta_docx"]][["ph_content"]]$FOOTERLEFT$location                = "footer"
cfg[["reporting"]][["meta_docx"]][["ph_content"]]$FOOTERLEFT$content                 = ""
cfg[["reporting"]][["meta_docx"]][["ph_content"]]$FOOTERRIGHT$location               = "footer"
cfg[["reporting"]][["meta_docx"]][["ph_content"]]$FOOTERRIGHT$content                = ""
cfg[["reporting"]][["meta_docx"]][["styles"]]$Normal                                 = "Normal"
cfg[["reporting"]][["meta_docx"]][["styles"]]$Code                                   = "Code"
cfg[["reporting"]][["meta_docx"]][["styles"]]$Default                                = "Default"
cfg[["reporting"]][["meta_docx"]][["styles"]]$TOC                                    = "TOC 1" 
cfg[["reporting"]][["meta_docx"]][["styles"]]$Heading_1                              = "heading 1"
cfg[["reporting"]][["meta_docx"]][["styles"]]$Heading_2                              = "heading 2"
cfg[["reporting"]][["meta_docx"]][["styles"]]$Heading_3                              = "heading 3"
cfg[["reporting"]][["meta_docx"]][["styles"]]$Table                                  = "Table Grid"
cfg[["reporting"]][["meta_docx"]][["styles"]]$Table_Caption                          = "table title"
cfg[["reporting"]][["meta_docx"]][["styles"]]$Table_Caption_Location                 = "top" 
cfg[["reporting"]][["meta_docx"]][["styles"]]$Figure_Caption                         = "graphic title" 
cfg[["reporting"]][["meta_docx"]][["styles"]]$Figure_Caption_Location                = "bottom" 
cfg[["reporting"]][["meta_docx"]][["styles"]]$Figure_Width                           = 6.0
cfg[["reporting"]][["meta_docx"]][["styles"]]$Figure_Height                          = 5.0


# Caption information:
cfg[["reporting"]][["meta_docx"]][["captions"]] =list(figure  = list(pre_number  ="Figure ", 
                                                                     post_number =": "),
                                                        table  = list(pre_number ="Table ", 
                                                                     post_number =": "))

# Default formatting for markdown:
cfg[["reporting"]][["meta_docx"]][["md_def"]][["default"]] = list(
        color          = "black",
        font.size      = 12,
        bold           = FALSE,
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Cambria (Body)",
        vertical.align = "baseline",
        shading.color  = "transparent")

# Default formatting for markdown for each style:
cfg[["reporting"]][["meta_docx"]][["md_def"]][["Normal"]] = list(
        color          = "black",
        font.size      = 12,
        bold           = FALSE,
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Cambria (Body)",
        vertical.align = "baseline",
        shading.color  = "transparent")

cfg[["reporting"]][["meta_docx"]][["md_def"]][["Code"]] = list(
        color          = "black",
        font.size      = 12,
        bold           = FALSE,
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Courier",
        vertical.align = "baseline",
        shading.color  = "transparent")

cfg[["reporting"]][["meta_docx"]][["md_def"]][["TOC"]] = list(
        color          = "black",
        font.size      = 12,
        bold           = FALSE,
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Courier",
        vertical.align = "baseline",
        shading.color  = "transparent")

cfg[["reporting"]][["meta_docx"]][["md_def"]][["Heading_1"]] = list(
        color          = "black",
        font.size      = 16,
        bold           = TRUE,
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Calibri (Headings)",
        vertical.align = "baseline",
        shading.color  = "transparent")

cfg[["reporting"]][["meta_docx"]][["md_def"]][["Heading_2"]] = list(
        color          = "black",
        font.size      = 13,
        bold           = TRUE,
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Calibri (Headings)",
        vertical.align = "baseline",
        shading.color  = "transparent")


cfg[["reporting"]][["meta_docx"]][["md_def"]][["Heading_3"]] = list(
        color          = "black",
        font.size      = 12,
        bold           = TRUE,
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Calibri (Headings)",
        vertical.align = "baseline",
        shading.color  = "transparent")

# MD format for tables
# Table_Labels is the footers and headers while Table is the defaults for the
# body of the table
cfg[["reporting"]][["meta_docx"]][["md_def"]][["Table_Labels"]] = list(
        color          = "black",
        font.size      = 12,
        bold           = TRUE, 
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Helvetica", 
        vertical.align = "baseline",
        shading.color  = "transparent")


cfg[["reporting"]][["meta_docx"]][["md_def"]][["Table"]] = list(
        color          = "black",
        font.size      = 12,
        bold           = FALSE,
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Helvetica", 
        vertical.align = "baseline",
        shading.color  = "transparent")

cfg[["reporting"]][["meta_docx"]][["md_def"]][["Table_Caption"]] = list(
        color          = "black",
        font.size      = 12,
        bold           = TRUE,
        italic         = TRUE,
        underlined     = FALSE,
        font.family    = "Cambria (Body)",
        vertical.align = "baseline",
        shading.color  = "transparent")

cfg[["reporting"]][["meta_docx"]][["md_def"]][["Figure"]] = list(
        color          = "black",
        font.size      = 12,
        bold           = FALSE,
        italic         = FALSE,
        underlined     = FALSE,
        font.family    = "Cambria (Body)",
        vertical.align = "baseline",
        shading.color  = "transparent")



cfg[["reporting"]][["meta_docx"]][["md_def"]][["Figure_Caption"]] = list(
        color          = "black",
        font.size      = 12,
        bold           = TRUE,
        italic         = TRUE,
        underlined     = FALSE,
        font.family    = "Cambria (Body)",
        vertical.align = "baseline",
        shading.color  = "transparent")



#--------------------------------------------------------------------


# This last call is necessary to initialize analysis specific components to
# their default values. For example to populate covariates with the default
# values listed in the system file.
cfg = system_select_set(cfg, "default")

# Populating the NCA meta information with defaults
cfg[["options"]][["nca_meta"]] = system_nca_parameters_meta()


return(cfg);
}

system_prepare_inputs = function(SIMINT_cfg, SIMINT_p, SIMINT_force_times){
# System parameters
<SYSTEM_PARAM>

for(SIMINT_cov_name in names(SIMINT_cfg[["options"]][["inputs"]][["covariates"]])){
# Looping through each covariate and creating a variable in the current
# function with the covariate name 

  # plucking out the covariate
  SIMINT_my_cov = SIMINT_cfg[["options"]][["inputs"]][["covariates"]][[SIMINT_cov_name]]

  # This is an initialization function, and these should only use covariates
  # that are constant (like gender or race), so we just use the first value
  SIMINT_cov_value = SIMINT_cfg[["options"]][["inputs"]][["covariates"]][[SIMINT_cov_name]][["values"]][["values"]][1]
  
  # creating the named value for the covariate
  # at the current time
  eval(parse(text=paste(sprintf("%s = SIMINT_cov_value",SIMINT_cov_name))))
}

# Static secondary parameters
<SS_PARAM>


# Making sure the SIMINT_force_times has some value
if(is.null(SIMINT_force_times)){
  SIMINT_force_times = SIMINT_cfg[["options"]][["simulation_options"]][["output_times"]][1]
}

# If the first compartment has dosing defined then we add the zeros to the
# vector where force_times are not already present in the bolus dosing times.
# If the first compartment does not have bolus defined then we created
# the data structure and add doses of 0 to at the force_times 

if(is.null(SIMINT_cfg[["options"]][["inputs"]][["bolus"]])){ 
  # if there is no bolus information specified we add a dummy bolus of zero
  # into the first compartment at the first sample time
  SIMINT_var    = rep(x=names(SIMINT_cfg[["options"]][["mi"]][["states"]])[1], times=length(SIMINT_force_times))
  SIMINT_time   = SIMINT_force_times
  SIMINT_value  = rep(x=0,     times=length(SIMINT_force_times))
  SIMINT_method = rep(x='add', times=length(SIMINT_force_times))
  }
else{
  # If there are bolus values specified then we add all of 
  # those to the events list
  SIMINT_var    = c()
  SIMINT_time   = c()
  SIMINT_value  = c()
  SIMINT_method = c()

  # turning the time scale from a string
  # into a numeric value:
  SIMINT_time_scale = eval(parse(text=SIMINT_cfg[["options"]][["inputs"]][["bolus"]][["times"]][["scale"]]))
  for(SIMINT_name in names(SIMINT_cfg[["options"]][["inputs"]][["bolus"]][["species"]])){
    SIMINT_dose_scale = eval(parse(text=SIMINT_cfg[["options"]][["inputs"]][["bolus"]][["species"]][[SIMINT_name]][["scale"]]))
    SIMINT_var    = c(SIMINT_var,     rep(SIMINT_name,length(SIMINT_cfg[["options"]][["inputs"]][["bolus"]][["times"]][["values"]])))
    SIMINT_method = c(SIMINT_method,  rep('add',length(SIMINT_cfg[["options"]][["inputs"]][["bolus"]][["times"]][["values"]])))
    SIMINT_time   = c(SIMINT_time,             SIMINT_cfg[["options"]][["inputs"]][["bolus"]][["times"]][["values"]]*SIMINT_time_scale)
    SIMINT_value  = c(SIMINT_value,            SIMINT_cfg[["options"]][["inputs"]][["bolus"]][["species"]][[SIMINT_name]][["values"]]*SIMINT_dose_scale)
  }
  # pulling out the times in force_times that were not in the bolus_times
  # Then we add in empty boluses there to force them to update
  SIMINT_force_times_add = setdiff(SIMINT_force_times,  unique(SIMINT_time))
  if(length(SIMINT_force_times_add) > 0){
    SIMINT_var    = c(SIMINT_var,     rep(SIMINT_name,length(SIMINT_force_times_add)))
    SIMINT_method = c(SIMINT_method,  rep('add',length(SIMINT_force_times_add)))
    SIMINT_time   = c(SIMINT_time,             SIMINT_force_times_add)
    SIMINT_value  = c(SIMINT_value,   rep(0, length(SIMINT_force_times_add)))
     
  
    }

  }


 # Making sure the time of the events is ordered
 SIMINT_EO = order(SIMINT_time)

 SIMINT_events = data.frame(
    var    = SIMINT_var[SIMINT_EO], 
    time   = SIMINT_time[SIMINT_EO],
    value  = SIMINT_value[SIMINT_EO],
    method = SIMINT_method[SIMINT_EO])



return(SIMINT_events)
}

system_IC = function(SIMINT_cfg, SIMINT_p){
#
# Returns initial condition information based on information stored in the cfg
# variable and an parameter vector. 
#
# Example usage:
#  cfg = system_fetch_cfg()
#  cfg = system_select_set(cfg, 'default')
#  parameters = cfg$parameters$values
#  IC = system_IC(cfg, parameters)
#

# System parameters
<SYSTEM_PARAM>


for(SIMINT_cov_name in names(SIMINT_cfg[["options"]][["inputs"]][["covariates"]])){
# Looping through each covariate and creating a variable in the current
# function with the covariate name 

  # plucking out the covariate
  SIMINT_my_cov = SIMINT_cfg[["options"]][["inputs"]][["covariates"]][[SIMINT_cov_name]]

  # This is an initialization function, and these should only use covariates
  # that are constant (like gender or race), so we just use the first value
  SIMINT_cov_value = SIMINT_cfg[["options"]][["inputs"]][["covariates"]][[SIMINT_cov_name]][["values"]][["values"]][1]
  
  # creating the named value for the covariate
  # at the current time
  eval(parse(text=paste(sprintf("%s = SIMINT_cov_value",SIMINT_cov_name))))
}

# Static secondary parameters
<SS_PARAM>



#
# Assigning initial conditions
#
# Looping through each state to see if there 
# is an entry in cfg for the initial condition.
# If If there isnt well default to zero, if there
# is an entry we will evaluate that assignment:
for (SIMINT_sname in names(SIMINT_cfg[["options"]][["mi"]][["states"]])){

  SIMINT_sname %in% names(SIMINT_cfg[["options"]][["initial_conditions"]])

  if(!(SIMINT_sname %in% names(SIMINT_cfg[["options"]][["initial_conditions"]]))){
    # Here there is no initial condition specified for this state
    SIMINT_tmp_assignment = sprintf('SIMINT_%s_IC = 0.0', SIMINT_sname) }
  else{
    # Here the initial condition has been specified
    SIMINT_tmp_assignment = sprintf('SIMINT_%s_IC = %s', SIMINT_sname, SIMINT_cfg[["options"]][["initial_conditions"]][[SIMINT_sname]]) }
  eval(parse(text=SIMINT_tmp_assignment))
}

# Remapping state ICs into vector form
SIMINT_all_ICs = c(
<STATE_ICS_REMAP>)
return(SIMINT_all_ICs);

}



auto_run_simulation_titrate  <- function(SIMINT_p, SIMINT_cfg, SIMINT_dropfirst=TRUE){
#
# This runs titration or rule based simulations 
#
# The following are defined locally within the environment
#
# Parameters and states
# SIMINT_p       - vector of system parameters
# SIMINT_cfg     - system configuration sent into the titration routine
# SIMINT_cfgtt   - system configuration at the current titration event time
# SIMINT_ttimes  - vector of titration times (in simulation units)
# SIMINT_tt_ts   - list of time scales for the current titration 
# SIMINT_history - data frame tracking the history of conditions that
#                  evaluated true with the following structure:
#                tname     - name of titration rule
#                value     - value of that rule 
#                simtime   - simulation time when that rule/value were triggered
#                timescale - time at the rule timescale when that rule/value were triggered


  # Zeroing all of the inputs because these are expeted
  # to be handled through titration below
  SIMINT_cfg = system_zero_inputs(SIMINT_cfg)

  SIMINT_som = list()
  #
  # Defining the system parameters locally 
  #
  <SYSTEM_PARAM>

  
  #
  # Defining the covariates
  #
  # This is an initialization function, and these should only use covariates
  # that are constant (like gender or race), so we just use the first value
  <COVARIATES_IC>

  #
  # Defining the secondary parameters locally
  #
  <SS_PARAM>


  #
  # Evaluating all of the input scales
  #
  SIMINT_scales = list()

  # Bolus scales
  if(!is.null(SIMINT_cfg[["options"]][["inputs"]][["bolus"]][["times"]][["scale"]])){
    eval(parse(text=paste(sprintf(' SIMINT_scales[["bolus"]] =  %s', SIMINT_cfg[["options"]][["inputs"]][["bolus"]][["times"]][["scale"]]))))
  }

  # Infusion rate scales
  for(SIMINT_rname in names(SIMINT_cfg[["options"]][["inputs"]][["infusion_rates"]])){
    SIMINT_scales[["infusion_rates"]][[SIMINT_rname]] = eval(parse(text=paste(sprintf("%s", SIMINT_cfg[["options"]][["inputs"]][["infusion_rates"]][[SIMINT_rname]][["times"]][["scale"]]))))
  }
  
  #
  # Identify all of the titration time points and creating an empty titration
  # history vector. To do this we loop through all of the rules.
  #
  SIMINT_thist_blank = list()
  SIMINT_ttimes = c()
  for(SIMINT_tname in names(SIMINT_cfg[["titration"]][["rules"]])){
    SIMINT_ttimes = c(SIMINT_ttimes, SIMINT_cfg[["titration"]][["rules"]][[SIMINT_tname]][["simtimes"]])
    SIMINT_thist_blank[[SIMINT_tname]][["value"]]     = -1
    SIMINT_thist_blank[[SIMINT_tname]][["simtime"]]   = -1
    SIMINT_thist_blank[[SIMINT_tname]][["timescale"]] = -1
  }

  #
  # This holds the entire titration history and is NULL until the first event
  # is encountered
  #
  SIMINT_history = NULL

  # Pulling out any duplicates that may occur
  SIMINT_ttimes = sort(unique(SIMINT_ttimes))

  # Trimming off titration times that are beyond the simulation output times
  SIMINT_ttimes = SIMINT_ttimes[  SIMINT_ttimes < max(SIMINT_cfg[["options"]][["simulation_options"]][["output_times"]])]

  # now we have all of the titration times, next we calculate the initial
  # conditions to start the first simulation
  SIMINT_IC = system_IC(SIMINT_cfg, SIMINT_p)

  # Now we loop through each of the titration time points



  for(SIMINT_ttidx in 1:length(SIMINT_ttimes)){
    # Pulling out the current bolus time
    SIMINT_ttime = SIMINT_ttimes[SIMINT_ttidx]

    #
    # Defining the time information for the current titration time. These are
    # the current titration times for each of the defined timescales in the
    # model
    #
    SIMINT_tt_ts = list()
    for(SIMINT_tsname in names(SIMINT_cfg[["options"]][["time_scales"]])){
      SIMINT_tt_ts[[SIMINT_tsname]] = SIMINT_cfg[["options"]][["time_scales"]][[SIMINT_tsname]]*SIMINT_ttime
    }

    # copying the cfg variable to use within the titration loop
    SIMINT_cfgtt = SIMINT_cfg
    # copying the titratino history variable to use within the titration loop
    SIMINT_thist = SIMINT_thist_blank

    #
    # Defining the state values
    #
    for(SIMINT_sname in names(SIMINT_IC)){
       eval(parse(text=paste(sprintf("%s = SIMINT_IC[[SIMINT_sname]]", SIMINT_sname))))
    }
    
    # JMH Apply titration rules twice
    #  (1) State assignments/resets
    #  (2) Other information

    SIMINT_rule_types = c('state', 'other')
    
    for(SIMINT_rule_type in SIMINT_rule_types){
      # Looping through all of the rules
      for(SIMINT_tname in names(SIMINT_cfgtt[["titration"]][["rules"]])){
        # if any of the rules are active at the current titration time
        # then we process those rules
        SIMINT_tcond = SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["simtimes"]]  == SIMINT_ttime
        if(any(SIMINT_tcond)){
      
          # Collecting the information for the current titration rule being
          # triggered
          SIMINT_ti_times = list()
          SIMINT_ti_times[["simtime"]]    = SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["simtimes"]][SIMINT_tcond]
          SIMINT_ti_times[["tstime"]]     = SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["times"]][SIMINT_tcond]
          SIMINT_ti_times[["timescale"]]  = SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["timescale"]]
      
          # now looping through each condition for the current rule to see if
          # there is a match
          for(SIMINT_tcond_name in names(SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["conditions"]])){
            #Evaluating the boolean expression
            SIMINT_tcond_bool = eval(parse(text=paste(SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["conditions"]][[SIMINT_tcond_name]][["cond"]])))

            if(SIMINT_tcond_bool){
               # if the Boolean expression is true then we
               # evaluate the action. To make sure that state actions occur
               # first we look to see if the rule type is state and the state
               # reassignment string is in the initial action. 
               
               if((SIMINT_rule_type == "state" &
                   grepl('SI_TT_STATE[', SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["conditions"]][[SIMINT_tcond_name]][["action"]], fixed=TRUE)) |
                  (SIMINT_rule_type == "other" &
                   !grepl('SI_TT_STATE[', SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["conditions"]][[SIMINT_tcond_name]][["action"]], fixed=TRUE))){

                 # Executing the action
                 eval(parse(text=paste(SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["conditions"]][[SIMINT_tcond_name]][["action_parsed"]])))
                
                 # Next we store the titration history
                 SIMINT_thist[[SIMINT_tname]][["value"]]     = eval(parse(text=paste(SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["conditions"]][[SIMINT_tcond_name]][["value_parsed"]])))
                 SIMINT_thist[[SIMINT_tname]][["simtime"]]   = SIMINT_ti_times[["simtime"]] 
                 SIMINT_thist[[SIMINT_tname]][["timescale"]] = SIMINT_ti_times[["tstime"]]  
                
                 #
                 # Collecting information for _all_ of the history
                 #
                 if(is.null(SIMINT_history)){
                   SIMINT_history = data.frame(tname     = SIMINT_tname,
                                               value     = SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["conditions"]][[SIMINT_tcond_name]][["value"]],
                                               simtime   = SIMINT_ti_times[["simtime"]],
                                               timescale = SIMINT_ti_times[["tstime"]], stringsAsFactors=FALSE)
                    
                   }
                 else{
                   SIMINT_history  = 
                       rbind(SIMINT_history, 
                             c(SIMINT_tname,                                                                       
                               SIMINT_cfgtt[["titration"]][["rules"]][[SIMINT_tname]][["conditions"]][[SIMINT_tcond_name]][["value"]], 
                               SIMINT_ti_times[["simtime"]],                                                            
                               SIMINT_ti_times[["tstime"]]))
                 
                 
                  }
              }
            }
          }
        }
      }
    }

    #
    # Setting the initial condition
    #
    SIMINT_cfgtt = system_set_option(cfg    = SIMINT_cfgtt, 
                                     group  = "simulation", 
                                     option = "initial_conditions",
                                     value  = SIMINT_IC)
    

  # JMH defining the output times for this interval
  # If we're before the last titration time we keep everything between that
  # time and the current time
  if(SIMINT_ttidx < length(SIMINT_ttimes)){
    SIMINT_ottr_keep_idx = (SIMINT_cfg[["options"]][["simulation_options"]][["output_times"]] >= SIMINT_ttimes[SIMINT_ttidx])    &
                           (SIMINT_cfg[["options"]][["simulation_options"]][["output_times"]] <= SIMINT_ttimes[SIMINT_ttidx + 1])

    } 
  else {
    SIMINT_ottr_keep_idx = (SIMINT_cfg[["options"]][["simulation_options"]][["output_times"]] >= SIMINT_ttimes[SIMINT_ttidx]) 
    }



  # Output times vector subset of the current titration times
  SIMINT_ottr = SIMINT_cfg[["options"]][["simulation_options"]][["output_times"]][SIMINT_ottr_keep_idx]

  # Adding a point just before the last point so that when we add the results
  # together before we will sample smoothly across titration points
  SIMINT_pre = c()
  if(SIMINT_ttidx < length(SIMINT_ttimes)){
   SIMINT_pre  = (max(SIMINT_ottr) - 1e-8*(max(SIMINT_ottr) - min(SIMINT_ottr))) }
  
  # Making sure the titration time point is also included
  SIMINT_ottr = c(SIMINT_ottr, SIMINT_ttimes[SIMINT_ttidx])

  SIMINT_ottr = sort(unique(c(SIMINT_ottr, SIMINT_pre)))
  # Setting the output times
  SIMINT_cfgtt = system_set_option(SIMINT_cfgtt, 
                                   group  = "simulation", 
                                   option = "output_times", 
                                   SIMINT_ottr)


  # Simulating the system forward in time
  SIMINT_somtt = run_simulation_ubiquity(SIMINT_parameters = SIMINT_p, 
                                         SIMINT_cfg        = SIMINT_cfgtt, 
                                         SIMINT_dropfirst  = SIMINT_dropfirst)

  # adding the titration history information 
  # pulling out the number of observations
  SIMINT_nobs = length(SIMINT_somtt[["simout"]][["time"]])

  SIMINT_somtt[["titration"]] = data.frame(matrix(, nrow=SIMINT_nobs, ncol=0))
  for(SIMINT_tname in names(SIMINT_thist)){
    # Appending the value, simtime, and timescale to the som output
    SIMINT_somtt[["titration"]][[sprintf('tt.%s.value',    SIMINT_tname)]] = rep(times=SIMINT_nobs,  SIMINT_thist[[SIMINT_tname]][["value"]])
    SIMINT_somtt[["titration"]][[sprintf('tt.%s.simtime',  SIMINT_tname)]] = rep(times=SIMINT_nobs,  SIMINT_thist[[SIMINT_tname]][["simtime"]])
    SIMINT_somtt[["titration"]][[sprintf('tt.%s.timescale',SIMINT_tname)]] = rep(times=SIMINT_nobs,  SIMINT_thist[[SIMINT_tname]][["timescale"]])
    }





  # Updating the initial condition to the last observation of som
  SIMINT_IC = as.numeric(SIMINT_somtt[["simout"]][length(SIMINT_somtt[["simout"]][,1]), names(SIMINT_cfg[["options"]][["mi"]][["states"]])])
  names(SIMINT_IC) = names(SIMINT_cfg[["options"]][["mi"]][["states"]])

  
  # Stripping the last observation off of som
  if(SIMINT_ttidx < length(SIMINT_ttimes)){
    SIMINT_somtt[["simout"]]    = SIMINT_somtt[["simout"]][1:(SIMINT_nobs - 1),]
    SIMINT_somtt[["titration"]] = SIMINT_somtt[["titration"]][1:(SIMINT_nobs - 1),]
    }
  
  #Appending the simulation results to the master set of results
  if(SIMINT_ttidx == 1){
    SIMINT_som = SIMINT_somtt }
  else{
     SIMINT_som[["simout"]]    = rbind(SIMINT_som[["simout"]],    SIMINT_somtt[["simout"]])
     SIMINT_som[["titration"]] = rbind(SIMINT_som[["titration"]], SIMINT_somtt[["titration"]])
    }

  }

  SIMINT_som[["titration_history"]] = SIMINT_history

# pulls out the last row of simout
# som$simout[length(som$simout[,1]),]

return(SIMINT_som)
}


system_DYDT = function(SIMINT_TIME,SIMINT_x,SIMINT_cfg){
#
# Evalutates the derivatives of the ODEs at time SIMINT_TIME
#

SIMINT_p = SIMINT_cfg[["parameters"]][["values"]]

# System parameters
<SYSTEM_PARAM>

for(SIMINT_rate_name in names(SIMINT_cfg[["options"]][["inputs"]][["infusion_rates"]])){
# Looping through each infusion rate and creating a variable in the current
# function with the rate at the value for the current time


  # plucking out the rate name
  SIMINT_my_rate = SIMINT_cfg[["options"]][["inputs"]][["infusion_rates"]][[SIMINT_rate_name]]

  # scaling the times
  eval(parse(text=sprintf('SIMINT_my_rate[["times"]][["values"]] = SIMINT_my_rate[["times"]][["values"]]*%s',SIMINT_my_rate[["times"]][["scale"]])))

  # getting the covariate value at the given time
  SIMINT_rate_value =
  system_evaluate_input(SIMINT_my_rate[["times"]][["values"]],
                                            SIMINT_my_rate[["levels"]][["values"]],
                                            SIMINT_TIME, 
                                            'step')
  
  # creating the named value for the covariate
  # at the current time
  eval(parse(text=paste(sprintf("%s = SIMINT_rate_value*%s",SIMINT_rate_name, SIMINT_my_rate[["levels"]][["scale"]]))))
}

for(SIMINT_cov_name in names(SIMINT_cfg[["options"]][["inputs"]][["covariates"]])){
# Looping through each covariate and creating a variable in the current
# function with the covariate name at the value for the current time

  # plucking out the covariate
  SIMINT_my_cov = SIMINT_cfg[["options"]][["inputs"]][["covariates"]][[SIMINT_cov_name]]

  # getting the covariate value at the given time
  SIMINT_cov_value =
  system_evaluate_input(SIMINT_my_cov[["times"]][["values"]],
                                           SIMINT_my_cov[["values"]][["values"]],
                                           SIMINT_TIME, 
                                           SIMINT_my_cov[["cv_type"]])
                                        
  # creating the named value for the covariate
  # at the current time
  eval(parse(text=paste(sprintf("%s = SIMINT_cov_value",SIMINT_cov_name))))
}


# States
<STATES> 

# Static secondary parameters
<SS_PARAM>

# Dynamic secondary parameters
<DS_PARAM>

# ODEs
<ODES>

# ODE
SIMINT_DYDT = c(
<ODES_REMAP>)

#return(SIMINT_DYDT)

list(dy=SIMINT_DYDT,global=c())

}


system_map_output = function(SIMINT_cfg, SIMINT_simout, SIMINT_p,  SIMINT_eventdata){


# Pulling out the time vector
SIMINT_tts     = SIMINT_simout[,'time']

# Creating the matrix to store the simout
SIMINT_all_outputs = c(names(SIMINT_cfg[["options"]][["mi"]][["states"]]), names(SIMINT_cfg[["options"]][["mi"]][["odes"]]))

SIMINT_simoutmat = matrix(data=NA, nrow=length(SIMINT_tts), ncol=(length(SIMINT_all_outputs) +1) )
colnames(SIMINT_simoutmat) =   eval(parse(text= sprintf("c('time', '%s')", paste(SIMINT_all_outputs, collapse="', '"))))


# System parameters
<SYSTEM_PARAM>



for(SIMINT_cov_name in names(SIMINT_cfg[["options"]][["inputs"]][["covariates"]])){
# Looping through each covariate and creating a variable in the current
# function with the covariate name (evaluated at the first instance)

  # plucking out the covariate
  SIMINT_my_cov = SIMINT_cfg[["options"]][["inputs"]][["covariates"]][[SIMINT_cov_name]]

  # This is an initialization step, and these should only use covariates
  # that are constant (like gender or race), so we just use the first value
  SIMINT_cov_value = SIMINT_cfg[["options"]][["inputs"]][["covariates"]][[SIMINT_cov_name]][["values"]][["values"]][1]
  
  # creating the named value for the covariate
  # at the current time
  # This is used when calculating secondary parameters:
  eval(parse(text=paste(sprintf("%s = SIMINT_cov_value",SIMINT_cov_name))))

  # This will be stored in the output data frame
  eval(parse(text=paste(sprintf("SIMINT_CVIC_%s = SIMINT_cov_value",SIMINT_cov_name))))
}



# Static secondary parameters
<SS_PARAM>

for (SIMINT_tidx in seq(1,length(SIMINT_tts))){
  SIMINT_TIME = SIMINT_tts[SIMINT_tidx]
  <TIME_SCALES>

  # Creating the states here at a given time
  # (above a vector was created)
  for (SIMINT_sname in names(SIMINT_cfg[["options"]][["mi"]][["states"]])){
    SIMINT_tmp_assignment = sprintf('%s =  SIMINT_simout[[SIMINT_tidx, SIMINT_sname]]', SIMINT_sname)  #JMH modify
    eval(parse(text=SIMINT_tmp_assignment))
  }


  for(SIMINT_rate_name in names(SIMINT_cfg[["options"]][["inputs"]][["infusion_rates"]])){
  # Looping through each infusion rate and creating a variable in the current
  # function with the rate at the value for the current time
  
  
    # plucking out the rate name
    SIMINT_my_rate = SIMINT_cfg[["options"]][["inputs"]][["infusion_rates"]][[SIMINT_rate_name]]
  
    # scaling the times
    eval(parse(text=sprintf('SIMINT_my_rate[["times"]][["values"]] = SIMINT_my_rate[["times"]][["values"]]*%s',SIMINT_my_rate[["times"]][["scale"]])))
  
    # getting the covariate value at the given time
    SIMINT_rate_value = system_evaluate_input(SIMINT_my_rate[["times"]][["values"]],
                                              SIMINT_my_rate[["levels"]][["values"]],
                                              SIMINT_TIME, 
                                              'step')
    
    # creating the named value for the covariate
    # at the current time
    eval(parse(text=paste(sprintf("%s = SIMINT_rate_value*%s",SIMINT_rate_name, SIMINT_my_rate[["levels"]][["scale"]]))))
  }
  
  for(SIMINT_cov_name in names(SIMINT_cfg[["options"]][["inputs"]][["covariates"]])){
  # Looping through each covariate and creating a variable in the current
  # function with the covariate name at the value for the current time
  
    # plucking out the covariate
    SIMINT_my_cov = SIMINT_cfg[["options"]][["inputs"]][["covariates"]][[SIMINT_cov_name]]
  
    # getting the covariate value at the given time
    SIMINT_cov_value = system_evaluate_input(SIMINT_my_cov[["times"]][["values"]],
                                             SIMINT_my_cov[["values"]][["values"]],
                                             SIMINT_TIME, 
                                             SIMINT_my_cov[["cv_type"]])
                                          
    # creating the named value for the covariate
    # at the current time
    eval(parse(text=paste(sprintf("%s = SIMINT_cov_value",SIMINT_cov_name))))
  }

  <DS_PARAM>
  
  # Outputs
  <OUTPUTS>  
  
  # With all of the variables defined we add a row to the simout matrix
  SIMINT_simoutmat[SIMINT_tidx,] =  eval(parse(text=sprintf("c(SIMINT_TIME, %s)", paste(SIMINT_all_outputs , collapse=", ")))) 
}


return(SIMINT_simoutmat) }


system_evaluate_input = function(tvals, lvals, etime, type){
#
# system_evaluate_input --- used to evaluate infusion rates and 
# covariates at etime
#  
#   tvals - time values where time-series is defined
#   lvals - corresponding values where the of the time series 
#   etime - time where the time-series is to be evaluated
#   type  - type of timeseries either: 'linear' or 'step' 
#  
  # initializing the return value 
  value = -1

  if(type == 'step'){
    if(length(tvals) == 1){
    # if there is only one element in tvals 
    # then we just take that value
      value = tail(lvals, 1)
    }
    else if(etime > max(tvals)){
    # the eval time is beyond the range of 
    # specified times then we carry the last
    # one forward
      value = tail(lvals, 1)
    }
    else if(etime < min(tvals)){
    # the eval time is before the range of 
    # specified times then we assign it to 
    # the first value
     value = lvals[1];
    }
    else{
    # this should return the portion of the 
    # lvals vector that is less than
    # the evaluation time (etime): 
    #
    # lvals[tvals <= etime]
    # and tail should pop off the last value
     value = tail(lvals[tvals <= etime], 1)
    
    }
  } 
  else if(type == 'linear'){
    if(length(tvals) == 1){
      # if there is only 1 value then there is no linear interpolation :)
      value = lvals
    }
    else{
    #linearly interpolating, values beyond boundary 
    # will take on the values at the boundary
    linear_interp = approx(tvals, lvals, etime, method="linear", rule=2, , , n=2)
    value = linear_interp$y
    }
  }
  return(value)
}

#-------------------------------------------------------------------------

# Looping through each output to add the error
add_observation_errors = function(simout, parameters, cfg){
for(output in names(cfg[["ve"]])){
   simout =  
   output_add_error(SIMINT_simout     = simout,               # simulation output without error
                    SIMINT_output     = output,               # output
                    SIMINT_em         = cfg[["ve"]][[output]],# error model
                    SIMINT_parameters = parameters,           # current parameter values
                    SIMINT_cfg        = cfg) 

}

return(simout)}

#-------------------------------------------------------------------------

output_add_error = function(SIMINT_simout, SIMINT_output, SIMINT_em, SIMINT_parameters, SIMINT_cfg){


# Defining the time
SIMINT_TIME = SIMINT_simout[,'time']

# Defining the pred values locally
PRED  = SIMINT_simout[, SIMINT_output]

# Pulling the variance parameter names
SIMINT_VP_NAMES = as.vector(SIMINT_cfg[["parameters"]][["matrix"]][["name"]][SIMINT_cfg[["parameters"]][["matrix"]][["ptype"]] == 'variance'])

# Evaluating the variance parameters locally
for(SIMINT_VP_NAME in SIMINT_VP_NAMES){
  eval(parse(text=sprintf('%s = as.numeric(SIMINT_parameters["%s"])', SIMINT_VP_NAME, SIMINT_VP_NAME)))
}

# calculating the error model value
eval(parse(text=sprintf("SIMINT_em_VARIANCE  =  %s", SIMINT_em)))
SIMINT_em_MEAN =  rep(0,length(PRED));
SIMINT_ERR     = rnorm(PRED, SIMINT_em_MEAN, sqrt(SIMINT_em_VARIANCE))

# adding the error to the prediction and storing it in SIMINT_simout
SIMINT_simout = eval(parse(text=sprintf('cbind(SIMINT_simout, SIOE_%s=c(PRED+SIMINT_ERR))', SIMINT_output)))

return(SIMINT_simout)}

Try the ubiquity package in your browser

Any scripts or data that you put into this service are public.

ubiquity documentation built on Sept. 5, 2021, 5:15 p.m.