d <- dist(SDAresults$scores[,-c(22,6,25,29,12,28,41,1,46,4,8,14,9,43)], method = "euclidean") hc1 <- hclust(d, method = "ward.D2" ) groups <- cutree(hc1, k=25) # cut tree into 25 clusters cell_data[,hclust_group := groups[cell_data$cell]] ggplot(cell_data, aes(Tsne1_QC1, Tsne2_QC1, color=as.factor(hclust_group))) + geom_point(data = transform(cell_data, hclust_group = NULL), colour = "grey85", size=0.1) + geom_point(size=0.25) + theme(legend.position = "bottom") + ggtitle("t-SNE - experiment") + facet_wrap(~hclust_group) ggplot(cell_data, aes(Tsne1_QC1, Tsne2_QC1, color=as.factor(hclust_group) %in% c(21,22,20,19,16,11,6,17,23,25))) + geom_point(size=0.1) + theme(legend.position = "bottom") + ggtitle("t-SNE - experiment") cell_data[, somatic3 := FALSE] cell_data[hclust_group %in% c(21,22,20,19,16,11,6,17,23,25), somatic3 := TRUE] ggplot(cell_data[somatic3 == FALSE], aes(Tsne1_QC1, Tsne2_QC1)) + geom_point(size=0.1) + theme(legend.position = "bottom") + ggtitle("t-SNE - experiment")
cell_data <- merge(cell_data, expression_dt("mt-Rnr2")) cell_data[,somatic4 := FALSE] cell_data[abs(V26)>2 | abs(V11)>2 | abs(V3)>2 | abs(V32)>1 | abs(V37)>1.5 | abs(V45)>2 | abs(V24)>2 |abs(V40)>1 | `mt-Rnr2`>3, somatic4 := TRUE] ggplot(expression_dt("mt-Rnr2")[cell_data], aes(Tsne1_QC1, Tsne2_QC1, colour=`mt-Rnr2`)) + geom_point(stroke=0, size=1) + scale_color_viridis(direction = -1) somatic_cells <- ggplot(cell_data, aes(Tsne1_QC1, Tsne2_QC1, color=somatic4)) + geom_point(size=0.1) + theme(legend.position = "bottom") + ggtitle("t-SNE - experiment") + scale_color_brewer(palette = "Set1") ggplot(cell_data[somatic4==FALSE], aes(Tsne1_QC1, Tsne2_QC1)) + geom_point(size=0.1) + theme(legend.position = "bottom") + ggtitle("t-SNE - experiment") # cell_data[,somatic2 := FALSE] # cell_data[V32<(-5) | V49>(1)|V21>(1) | V16<(-1) | V10>(5) | V45>(3) | V19>(1) | V40>(2) | V11>(5) | V3>(5)|V24<(-1)|V37>(2) , somatic2 := TRUE] # ggplot(cell_data, aes(Tsne1_QC1, Tsne2_QC1, color=((Tsne1_QC1-5)^2+(Tsne2_QC1-10)^2)<5)) + # geom_point(size=0.25) + # theme(legend.position = "bottom") + # ggtitle("t-SNE - experiment") # ggplot(cell_data, aes(Tsne1_QC1, Tsne2_QC1, color=somatic2)) + # geom_point(size=0.25) + # theme(legend.position = "bottom") + # ggtitle("t-SNE - experiment")
Assign cell a single component based on max abs score
max_component <- data.table(max_component = sapply(1:nrow(SDAresults$scores), function(x) which.max(abs(SDAresults$scores[x,]))), cell = rownames(SDAresults$scores)) cell_data <- max_component[cell_data, on="cell"]
cell_data[, somatic5 := F] cell_data[max_component %in% c(3,10,11,16,19,21,24,26,32,37,40,45,49) | `mt-Rnr2`>3.5 , somatic5 := T] ggplot(cell_data, aes(Tsne1_QC1, Tsne2_QC1, colour=somatic4)) + geom_point(stroke=0) + theme(legend.position = "bottom") ggplot(cell_data, aes(Tsne1_QC1, Tsne2_QC1, colour=somatic5)) + geom_point(stroke=0) + theme(legend.position = "bottom")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.