## the Poison Inverse Gaussian distribution
## KA RAR and MS
## will not work with CG()
##-----------------------------------------------------------------------------------------
PIG <- function (mu.link = "log", sigma.link = "log")
{
mstats <- checklink("mu.link", "Beta Binomial", substitute(mu.link),
c("inverse", "log", "identity", "sqrt"))
dstats <- checklink("sigma.link", "Beta Binomial", substitute(sigma.link),
c("inverse", "log", "identity", "sqrt"))
structure(
list(family = c("PIG","Poisson.Inverse.Gaussian"),
parameters = list(mu = TRUE, sigma = TRUE),
nopar = 2,
type = "Discrete",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
dldm = function(y,mu,sigma) {
ty <- as.double(.C("tofyPIG1", as.double(y), as.double(mu), as.double(sigma),
ans=double(length(y)), as.integer(length(y)), as.integer(max(y)+1),
PACKAGE="gamlss.dist")$ans)
dldm <- (y-ty)/mu
dldm
},
d2ldm2 = function(y,mu,sigma) {
#d2ldm2 <- eval.parent(quote(-dldp*dldp))
ty <- as.double(.C("tofyPIG1", as.double(y), as.double(mu), as.double(sigma),
ans=double(length(y)), as.integer(length(y)), as.integer(max(y)+1),
PACKAGE="gamlss.dist")$ans)
dldm <- (y-ty)/mu
d2ldm2 <- -dldm*dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2,-1e-15)
d2ldm2
},
dldd = function(y,mu,sigma) {
ty <- as.double(.C("tofyPIG1", as.double(y), as.double(mu), as.double(sigma),
ans=double(length(y)), as.integer(length(y)), as.integer(max(y)+1),
PACKAGE="gamlss.dist")$ans)
dldd <- ((ty*(1+sigma*mu)/mu)-(1+sigma*y))/(sigma^2)
dldd
},
d2ldd2 = function(y,mu,sigma){
#d2ldd2 <- eval.parent(quote(-dldp*dldp))
ty <- as.double(.C("tofyPIG1", as.double(y), as.double(mu), as.double(sigma),
ans=double(length(y)), as.integer(length(y)), as.integer(max(y)+1),
PACKAGE="gamlss.dist")$ans)
dldd <- ((ty*(1+sigma*mu)/mu)-(1+sigma*y))/(sigma^2)
d2ldd2 <- -dldd*dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2,-1e-15)
d2ldd2
},
d2ldmdd = function(y,mu,sigma) {
ty <- as.double(.C("tofyPIG1", as.double(y), as.double(mu), as.double(sigma),
ans=double(length(y)), as.integer(length(y)), as.integer(max(y)+1),
PACKAGE="gamlss.dist")$ans)
dldm <- (y-ty)/mu
dldd <- ((ty*(1+sigma*mu)/mu)-(1+sigma*y))/(sigma^2)
d2ldmdd <- -dldm*dldd
d2ldmdd
},
G.dev.incr = function(y,mu,sigma,pw=1,...) -2*dPIG(y, mu, sigma, log=TRUE),
rqres = expression(
rqres(pfun="pPIG", type="Discrete", ymin=0, y=y, mu=mu, sigma=sigma)
),
mu.initial = expression(mu <- (y+mean(y))/2),
sigma.initial = expression( sigma <- rep( max( ((var(y)-mean(y))/(mean(y)^2)),0.1),
length(y)) ),
mu.valid = function(mu) all(mu > 0) ,
sigma.valid = function(sigma) all(sigma > 0),
y.valid = function(y) all(y >= 0),
mean = function(mu, sigma) mu,
variance = function(mu, sigma) mu + sigma * mu^2
),
class = c("gamlss.family","family"))
}
##-----------------------------------------------------------------------------------------
# 12-3-06 it seems that this function do work with y=0
#t.of.y <- function (y, mu, sigma, bsum = FALSE, ...)
#{
# tofy <- sumlty <- rep(0,length(y))
# lofyp1 <- 0
# for (i in seq(along=y))
# {
# lofyp1 <- y[i]+1
# tofynew <- rep(0,lofyp1)
# tofynew[1] <- mu[i]*((1+2*sigma[i]*mu[i])^(-0.5))
# if (lofyp1==1)
# {
# tofy[i] <- tofynew[lofyp1]
# if (bsum) sumlty[i] <- 0
# }
# else
# {
# for (j in 2:lofyp1)
# {
# tofynew[j] <- ((sigma[i]*(2*(j-1)-1)/mu[i])+(1/tofynew[j-1]))*(tofynew[1])^2
# }
# tofy[i] <- tofynew[lofyp1]
# if (bsum) sumlty[i] <- sum(log(tofynew))-log(tofynew[j])
# }
# }
# result <- cbind(tofy, sumlty)
# result
#}
#-----------------------------------------------------------------------------------------
dPIG<-function(x, mu = 1, sigma = 1 , log = FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(x < 0) ) stop(paste("x must be >=0", "\n", ""))
ly <- max(length(x),length(mu), length(sigma))
x <- rep(x, length = ly)
nsigma <- rep(sigma, length = ly)
nmu <- rep(mu, length = ly)
sumlty <- as.double(.C("tofyPIG2", as.double(x), as.double(nmu), as.double(nsigma),
ans=double(ly), as.integer(length(x)),
as.integer(max(x)+1), PACKAGE="gamlss.dist")$ans)
logfy <- -lgamma(x+1)+(1-sqrt(1+2*sigma*mu))/sigma +sumlty
if(log==FALSE) fy <- exp(logfy) else fy <- logfy
fy
}
##-----------------------------------------------------------------------------------------
pPIG <- function(q, mu=1, sigma=1, lower.tail = TRUE, log.p = FALSE)
{
## function to calculate the cdf
## function to calculate the cdf
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(q < 0) ) stop(paste("y must be >=0", "\n", ""))
lq <- length(q)
nsigma <- rep(sigma, length = lq)
nmu <- rep(mu, length = lq)
cdf <-as.double(.C("tocdf", as.double(q), as.double(nmu), as.double(nsigma),
ans=double(lq), as.integer(lq), PACKAGE="gamlss.dist")$ans)
if(lower.tail==TRUE) cdf <- cdf else cdf=1-cdf
if(log.p==FALSE) cdf <- cdf else cdf <- log(cdf)
cdf
}
##-----------------------------------------------------------------------------------------
qPIG <- function(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE,
max.value = 10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(p < 0) | any(p > 1.0001)) stop(paste("p must be between 0 and 1", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
ly <- length(p)
QQQ <- rep(0,ly)
nsigma <- rep(sigma, length = ly)
nmu <- rep(mu, length = ly)
for (i in seq(along=p))
{
cumpro <- 0
if (p[i]+0.000000001 >= 1) QQQ[i] <- Inf
else
{
for (j in seq(from = 0, to = max.value))
{
cumpro <- pPIG(j, mu = nmu[i], sigma = nsigma[i] , log.p = FALSE)
QQQ[i] <- j
if (p[i] <= cumpro ) break
}
}
}
QQQ
}
##-----------------------------------------------------------------------------------------
rPIG <- function(n, mu = 1, sigma = 1, max.value = 10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qPIG(p, mu=mu, sigma=sigma, max.value = max.value)
r
}
##-----------------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.