# 28_11_2007
# the first derivatives squares have been used here
SEP1 <- function (mu.link="identity", sigma.link="log", nu.link ="identity", tau.link="log")
{
mstats <- checklink( "mu.link", "Skew exponential power (Azzalini type 1)", substitute(mu.link),
c("inverse", "log", "identity", "own"))
dstats <- checklink("sigma.link", "Skew exponential power (Azzalini type 1)", substitute(sigma.link),
c("inverse", "log", "identity", "own"))
vstats <- checklink( "nu.link", "Skew exponential power (Azzalini type 1)", substitute(nu.link),
c("inverse", "log", "identity", "own"))
tstats <- checklink( "tau.link", "Skew exponential power (Azzalini type 1)", substitute(tau.link),
c("inverse", "log", "identity", "own"))
structure(
list(family = c("SEP1", "Skew exponential power (Azzalini type 1)"),
parameters = list(mu=TRUE, sigma=TRUE, nu=TRUE, tau=TRUE),
nopar = 4,
type = "Continuous",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
tau.link = as.character(substitute(tau.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
tau.linkfun = tstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
tau.linkinv = tstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
tau.dr = tstats$mu.eta,
dldm = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- nu*z
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldm <- -(exp(lpdf-lcdf))*nu/sigma + sign(z)*(abs(z)^(tau-1))/sigma
dldm
},
d2ldm2 = function(y,mu,sigma,nu,tau){
z <- (y-mu)/sigma
w <- nu*z
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldm <- -(exp(lpdf-lcdf))*nu/sigma + sign(z)*(abs(z)^(tau-1))/sigma
d2ldm2 <- -dldm*dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2,-1e-15)
d2ldm2
},
dldd = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- nu*z
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldd <- -(exp(lpdf-lcdf))*nu*z/sigma + ((abs(z)^tau)-1)/sigma
dldd
} ,
d2ldd2 = function(y,mu,sigma,nu,tau){
z <- (y-mu)/sigma
w <- nu*z
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldd <- -(exp(lpdf-lcdf))*nu*z/sigma + ((abs(z)^tau)-1)/sigma
d2ldd2 <- -dldd*dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2,-1e-15)
d2ldd2
},
dldv = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- nu*z
dwdv <- w/nu
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldv <- (exp(lpdf-lcdf))*dwdv
dldv
} ,
d2ldv2 = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- nu*z
dwdv <- w/nu
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldv <- (exp(lpdf-lcdf))*dwdv
d2ldv2 <- -dldv*dldv
d2ldv2 <- ifelse(d2ldv2 < -1e-15, d2ldv2,-1e-15)
d2ldv2
},
dldt = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- nu*z
t1 <- tau+0.00002
t2 <- tau-0.00002
s <- ((abs(w))^tau)/tau
s1 <- ((abs(w))^t1)/t1
s2 <- ((abs(w))^t2)/t2
dldf <- (log(tau)+tau-1+digamma(1/tau)-tau*((abs(z))^tau)*log(abs(z))+((abs(z))^tau))/(tau*tau)
dldcdf1 <- sign(w)*(log(1+pgamma(s1,shape=1/t1,scale=1))-log(1+pgamma(s2,shape=1/t2,scale=1)))/0.00004
suppressWarnings(lcdf1 <- log(0.5 + w*exp((1-(1/t1))*log(t1)-lgamma(1/t1)-log(2))))
suppressWarnings(lcdf2 <- log(0.5 + w*exp((1-(1/t2))*log(t2)-lgamma(1/t2)-log(2))))
dldcdf2 <- (lcdf1-lcdf2)/0.00004
dldcdf <- ifelse((s==0),dldcdf2,dldcdf1)
dldt <- dldf + dldcdf
dldt
} ,
d2ldt2 = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
w <- nu*z
t1 <- tau+0.00002
t2 <- tau-0.00002
s <- ((abs(w))^tau)/tau
s1 <- ((abs(w))^t1)/t1
s2 <- ((abs(w))^t2)/t2
dldf <- (log(tau)+tau-1+digamma(1/tau)-tau*((abs(z))^tau)*log(abs(z))+((abs(z))^tau))/(tau*tau)
dldcdf1 <- sign(w)*(log(1+pgamma(s1,shape=1/t1,scale=1))-log(1+pgamma(s2,shape=1/t2,scale=1)))/0.00004
suppressWarnings(lcdf1 <- log(0.5 + w*exp((1-(1/t1))*log(t1)-lgamma(1/t1)-log(2))))
suppressWarnings(lcdf2 <- log(0.5 + w*exp((1-(1/t2))*log(t2)-lgamma(1/t2)-log(2))))
dldcdf2 <- (lcdf1-lcdf2)/0.00004
dldcdf <- ifelse((s==0),dldcdf2,dldcdf1)
dldt <- dldf + dldcdf
d2ldt2 <- -dldt*dldt
d2ldt2 <- ifelse(d2ldt2 < -1e-15, d2ldt2,-1e-15)
d2ldt2
},
d2ldmdd = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- nu*z
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldm <- -(exp(lpdf-lcdf))*nu/sigma + sign(z)*(abs(z)^(tau-1))/sigma
dldd <- -(exp(lpdf-lcdf))*nu*z/sigma + ((abs(z)^tau)-1)/sigma
d2ldmdd <- -(dldm*dldd)
d2ldmdd
},
d2ldmdv = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- nu*z
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldm <- -(exp(lpdf-lcdf))*nu/sigma + sign(z)*(abs(z)^(tau-1))/sigma
dwdv <- w/nu
dldv <- (exp(lpdf-lcdf))*dwdv
d2ldmdv <- -(dldm*dldv)
d2ldmdv
},
d2ldmdt = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- nu*z
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldm <- -(exp(lpdf-lcdf))*nu/sigma + sign(z)*(abs(z)^(tau-1))/sigma
t1 <- tau+0.00002
t2 <- tau-0.00002
s1 <- ((abs(w))^t1)/t1
s2 <- ((abs(w))^t2)/t2
dldf <- (log(tau)+tau-1+digamma(1/tau)-tau*((abs(z))^tau)*log(abs(z))+((abs(z))^tau))/(tau*tau)
dldcdf1 <- sign(w)*(log(1+pgamma(s1,shape=1/t1,scale=1))-log(1+pgamma(s2,shape=1/t2,scale=1)))/0.00004
lcdf1 <- log(0.5 + w*exp((1-(1/t1))*log(t1)-lgamma(1/t1)-log(2)))
lcdf2 <- log(0.5 + w*exp((1-(1/t2))*log(t2)-lgamma(1/t2)-log(2)))
dldcdf2 <- (lcdf1-lcdf2)/0.00004
dldcdf <- ifelse((s==0),dldcdf2,dldcdf1)
dldt <- dldf + dldcdf
d2ldmdt <- -(dldm*dldt)
d2ldmdt
},
d2ldddv = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- nu*z
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldd <- -(exp(lpdf-lcdf))*nu*z/sigma + ((abs(z)^tau)-1)/sigma
dwdv <- w/nu
dldv <- (exp(lpdf-lcdf))*dwdv
d2ldddv <- -(dldd*dldv)
d2ldddv
},
d2ldddt = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- nu*z
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldd <- -(exp(lpdf-lcdf))*nu*z/sigma + ((abs(z)^tau)-1)/sigma
t1 <- tau+0.00002
t2 <- tau-0.00002
s1 <- ((abs(w))^t1)/t1
s2 <- ((abs(w))^t2)/t2
dldf <- (log(tau)+tau-1+digamma(1/tau)-tau*((abs(z))^tau)*log(abs(z))+((abs(z))^tau))/(tau*tau)
dldcdf1 <- sign(w)*(log(1+pgamma(s1,shape=1/t1,scale=1))-log(1+pgamma(s2,shape=1/t2,scale=1)))/0.00004
lcdf1 <- log(0.5 + w*exp((1-(1/t1))*log(t1)-lgamma(1/t1)-log(2)))
lcdf2 <- log(0.5 + w*exp((1-(1/t2))*log(t2)-lgamma(1/t2)-log(2)))
dldcdf2 <- (lcdf1-lcdf2)/0.00004
dldcdf <- ifelse((s==0),dldcdf2,dldcdf1)
dldt <- dldf + dldcdf
d2ldddt <- -(dldd*dldt)
d2ldddt
},
d2ldvdt = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- nu*z
dwdv <- w/nu
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-s-lgamma(1/tau)-log(2)
lcdf <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
dldv <- (exp(lpdf-lcdf))*dwdv
t1 <- tau+0.00002
t2 <- tau-0.00002
s1 <- ((abs(w))^t1)/t1
s2 <- ((abs(w))^t2)/t2
dldf <- (log(tau)+tau-1+digamma(1/tau)-tau*((abs(z))^tau)*log(abs(z))+((abs(z))^tau))/(tau*tau)
dldcdf1 <- sign(w)*(log(1+pgamma(s1,shape=1/t1,scale=1))-log(1+pgamma(s2,shape=1/t2,scale=1)))/0.00004
lcdf1 <- log(0.5 + w*exp((1-(1/t1))*log(t1)-lgamma(1/t1)-log(2)))
lcdf2 <- log(0.5 + w*exp((1-(1/t2))*log(t2)-lgamma(1/t2)-log(2)))
dldcdf2 <- (lcdf1-lcdf2)/0.00004
dldcdf <- ifelse((s==0),dldcdf2,dldcdf1)
dldt <- dldf + dldcdf
d2ldvdt <- -(dldv*dldt)
d2ldvdt
},
G.dev.incr = function(y,mu,sigma,nu,tau,...)
{
-2*dSEP1(y,mu,sigma,nu,tau,log=TRUE)
} ,
rqres = expression(
rqres(pfun="pSEP1", type="Continuous", y=y, mu=mu,
sigma=sigma, nu=nu, tau=tau)) ,
mu.initial = expression(mu <- (y+mean(y))/2), # rep(mean(y),length(y))
sigma.initial = expression(sigma <- rep(sd(y)/4, length(y))),
nu.initial = expression(nu <- rep(0.1, length(y))),
tau.initial = expression(tau <-rep(1.6, length(y))),
mu.valid = function(mu) TRUE,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) TRUE ,
tau.valid = function(tau) all(tau > 0),
y.valid = function(y) TRUE
),
class = c("gamlss.family","family"))
}
#------------------------------------------------------------------------------------------
dSEP1 <- function(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
{
if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(tau < 0)) stop(paste("tau must be positive", "\n", ""))
z <- (x-mu)/sigma
w <- nu*z
sz <- ((abs(z))^tau)/tau
s <- ((abs(w))^tau)/tau
lpdf <- (1-(1/tau))*log(tau)-sz-lgamma(1/tau)-log(2)
lcdf1 <- log(0.5*(1+pgamma(s,shape=1/tau,scale=1)*sign(w)))
cdf2 <- 0.5 + w*exp((1-(1/tau))*log(tau)-lgamma(1/tau)-log(2))
suppressWarnings(lcdf2 <- log(cdf2))
lcdf <- ifelse((s==0),lcdf2,lcdf1) # note this change, note ifelse used here
loglik <- lpdf + lcdf + log(2) - log(sigma)
if(log==FALSE) ft <- exp(loglik) else ft <- loglik
ft
}
#------------------------------------------------------------------------------------------
pSEP1 <- function(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
{ if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(tau < 0)) stop(paste("tau must be positive", "\n", ""))
lp <- pmax.int(length(q), length(mu), length(sigma), length(nu), length(tau))
q <- rep(q, length = lp)
sigma <- rep(sigma, length = lp)
mu <- rep(mu, length = lp)
nu <- rep(nu, length = lp)
tau <- rep(tau, length = lp)
cdf <- rep(0, length = lp)
for (i in 1:lp)
{
cdf[i] <- integrate(function(x)
dSEP1(x, mu = 0, sigma = 1, nu = nu[i], tau = tau[i]), -Inf, (q[i]-mu[i])/sigma[i] )$value #DS BR 7-10-11
}
if(lower.tail==TRUE) cdf <- cdf else cdf <- 1-cdf
if(log.p==FALSE) cdf <- cdf else cdf <- log(cdf)
cdf
}
#------------------------------------------------------------------------------------------
qSEP1 <- function(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
{
#---functions--------------------------------------------
h1 <- function(q)
{
pSEP1(q , mu = mu[i], sigma = sigma[i], nu = nu[i], tau = tau[i]) - p[i]
}
h <- function(q)
{
pSEP1(q , mu = mu[i], sigma = sigma[i], nu = nu[i], tau = tau[i])
}
#-----------------------------------------------------------------
#if (any(mu <= 0)) stop(paste("mu must be positive", "\n", ""))
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
if (any(p < 0)|any(p > 1)) stop(paste("p must be between 0 and 1", "\n", ""))
lp <- max(length(p),length(mu),length(sigma),length(nu), length(tau))
p <- rep(p, length = lp)
sigma <- rep(sigma, length = lp)
mu <- rep(mu, length = lp)
nu <- rep(nu, length = lp)
tau <- rep(tau, length = lp)
q <- rep(0,lp)
for (i in seq(along=p))
{
if (h(mu[i])<p[i])
{
interval <- c(mu[i], mu[i]+sigma[i])
j <-2
while (h(interval[2]) < p[i])
{interval[2]<- mu[i]+j*sigma[i]
j<-j+1
}
}
else
{
interval <- c(mu[i]-sigma[i], mu[i])
j <-2
while (h(interval[1]) > p[i])
{interval[1]<- mu[i]-j*sigma[i]
j<-j+1
}
}
q[i] <- uniroot(h1, interval)$root
#interval <- c(.Machine$double.xmin, 20)
}
q
}
#----------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------------
rSEP1 <- function(n, mu=0, sigma=1, nu=0, tau=2)
{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qSEP1(p, mu = mu,sigma = sigma, nu = nu,tau = tau)
r
}
#-----------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.