# 28_11_2007
SEP3 <- function (mu.link="identity", sigma.link="log", nu.link ="log", tau.link="log")
{
mstats <- checklink("mu.link", "skew exponential power type 2", substitute(mu.link),
c("inverse", "log", "identity", "own"))
dstats <- checklink("sigma.link", "skew exponential power type 2", substitute(sigma.link),
c("inverse", "log", "identity", "own"))
vstats <- checklink("nu.link", "skew exponential power type 2",substitute(nu.link),
c("inverse", "log", "identity", "own"))
tstats <- checklink("tau.link", "skew exponential power type 2 ",substitute(tau.link),
c("inverse", "log", "identity", "own"))
structure(
list(family = c("SEP3", "skew exponential power type 3"),
parameters = list(mu=TRUE, sigma=TRUE, nu=TRUE, tau=TRUE),
nopar = 4,
type = "Continuous",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
tau.link = as.character(substitute(tau.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
tau.linkfun = tstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
tau.linkinv = tstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
tau.dr = tstats$mu.eta,
dldm = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
dldma <- sign(z)*(nu*tau/(2*sigma))*((nu*abs(z))^(tau-1))
dldmb <- sign(z)*(tau/(2*sigma*nu))*((abs(z)/nu)^(tau-1))
dldm <- ifelse(y < mu, dldma , dldmb)
dldm
},
d2ldm2 = function(y,mu,sigma,nu,tau){
z <- (y-mu)/sigma
dldma <- sign(z)*(nu*tau/(2*sigma))*((nu*abs(z))^(tau-1))
dldmb <- sign(z)*(tau/(2*sigma*nu))*((abs(z)/nu)^(tau-1))
dldm <- ifelse(y < mu, dldma , dldmb)
d2ldm2 <- -dldm*dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2,-1e-15)
d2ldm2
},
dldd = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
dldda <- (nu*abs(z))^tau
dlddb <- (abs(z)/nu)^tau
dldd <- ifelse(y < mu, dldda , dlddb )
dldd <- dldd*(tau/(2*sigma))-(1/sigma)
dldd
} ,
d2ldd2 = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
dldda <- (nu*abs(z))^tau
dlddb <- (abs(z)/nu)^tau
dldd <- ifelse(y < mu, dldda , dlddb )
dldd <- dldd*(tau/(2*sigma))-(1/sigma)
d2ldd2 <- -dldd*dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2,-1e-15)
d2ldd2
},
dldv = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
dldva <- sign(z)*((nu*abs(z))^tau)
dldvb <- sign(z)*((abs(z)/nu)^tau)
dldv <- ifelse(y < mu, dldva , dldvb )
dldv <- dldv*(tau/(2*nu)) + (1/nu) - (2*nu)/(1+(nu^2))
dldv
} ,
d2ldv2 = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
dldva <- sign(z)*((nu*abs(z))^tau)
dldvb <- sign(z)*((abs(z)/nu)^tau)
dldv <- ifelse(y < mu, dldva , dldvb )
dldv <- dldv*(tau/(2*nu)) + (1/nu) - (2*nu)/(1+(nu^2))
d2ldv2 <- -dldv*dldv
d2ldv2 <- ifelse(d2ldv2 < -1e-4, d2ldv2,-1e-4)
d2ldv2
},
dldt = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
dldta <- -(log(nu*abs(z)))*((nu*abs(z))^tau)
dldtb <- -(log(abs(z)/nu))*((abs(z)/nu)^tau)
dldt <- ifelse(y < mu, dldta , dldtb)
dldt <- dldt/2 + ((digamma(1+(1/tau)))/(tau^2)) + log(2)/(tau^2)
dldt
} ,
d2ldt2 = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
dldta <- -(log(nu*abs(z)))*((nu*abs(z))^tau)
dldtb <- -(log(abs(z)/nu))*((abs(z)/nu)^tau)
dldt <- ifelse(y < mu, dldta , dldtb)
dldt <- dldt/2 + ((digamma(1+(1/tau)))/(tau^2)) + log(2)/(tau^2)
d2ldt2 <- -dldt*dldt
d2ldt2 <- ifelse(d2ldt2 < -1e-4, d2ldt2,-1e-4)
d2ldt2
} ,
d2ldmdd = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
dldma <- sign(z)*(nu*tau/(2*sigma))*((nu*abs(z))^(tau-1))
dldmb <- sign(z)*(tau/(2*sigma*nu))*((abs(z)/nu)^(tau-1))
dldm <- ifelse(y < mu, dldma , dldmb)
dldda <- (nu*abs(z))^tau
dlddb <- (abs(z)/nu)^tau
dldd <- ifelse(y < mu, dldda , dlddb )
dldd <- dldd*(tau/(2*sigma))-(1/sigma)
d2ldmdd <- -(dldm*dldd)
d2ldmdd
},
d2ldmdv = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
dldma <- sign(z)*(nu*tau/(2*sigma))*((nu*abs(z))^(tau-1))
dldmb <- sign(z)*(tau/(2*sigma*nu))*((abs(z)/nu)^(tau-1))
dldm <- ifelse(y < mu, dldma , dldmb)
dldva <- sign(z)*((nu*abs(z))^tau)
dldvb <- sign(z)*((abs(z)/nu)^tau)
dldv <- ifelse(y < mu, dldva , dldvb )
dldv <- dldv*(tau/(2*nu)) + (1/nu) - (2*nu)/(1+(nu^2))
d2ldmdv <- -(dldm*dldv)
d2ldmdv
} ,
d2ldmdt = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
dldma <- sign(z)*(nu*tau/(2*sigma))*((nu*abs(z))^(tau-1))
dldmb <- sign(z)*(tau/(2*sigma*nu))*((abs(z)/nu)^(tau-1))
dldm <- ifelse(y < mu, dldma , dldmb)
dldta <- -(log(nu*abs(z)))*((nu*abs(z))^tau)
dldtb <- -(log(abs(z)/nu))*((abs(z)/nu)^tau)
dldt <- ifelse(y < mu, dldta , dldtb)
dldt <- dldt/2 + ((digamma(1+(1/tau)))/(tau^2)) + log(2)/(tau^2)
d2ldmdt <- -(dldm*dldt)
d2ldmdt
},
d2ldddv = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
dldda <- (nu*abs(z))^tau
dlddb <- (abs(z)/nu)^tau
dldd <- ifelse(y < mu, dldda , dlddb )
dldd <- dldd*(tau/(2*sigma))-(1/sigma)
dldva <- sign(z)*((nu*abs(z))^tau)
dldvb <- sign(z)*((abs(z)/nu)^tau)
dldv <- ifelse(y < mu, dldva , dldvb )
dldv <- dldv*(tau/(2*nu)) + (1/nu) - (2*nu)/(1+(nu^2))
d2ldddv <- -(dldd*dldv)
d2ldddv
},
d2ldddt = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
dldda <- (nu*abs(z))^tau
dlddb <- (abs(z)/nu)^tau
dldd <- ifelse(y < mu, dldda , dlddb )
dldd <- dldd*(tau/(2*sigma))-(1/sigma)
dldta <- -(log(nu*abs(z)))*((nu*abs(z))^tau)
dldtb <- -(log(abs(z)/nu))*((abs(z)/nu)^tau)
dldt <- ifelse(y < mu, dldta , dldtb)
dldt <- dldt/2 + ((digamma(1+(1/tau)))/(tau^2)) + log(2)/(tau^2)
d2ldddt <- -(dldd*dldt)
d2ldddt
},
d2ldvdt = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
dldva <- sign(z)*((nu*abs(z))^tau)
dldvb <- sign(z)*((abs(z)/nu)^tau)
dldv <- ifelse(y < mu, dldva , dldvb )
dldv <- dldv*(tau/(2*nu)) + (1/nu) - (2*nu)/(1+(nu^2))
dldta <- -(log(nu*abs(z)))*((nu*abs(z))^tau)
dldtb <- -(log(abs(z)/nu))*((abs(z)/nu)^tau)
dldt <- ifelse(y < mu, dldta , dldtb)
dldt <- dldt/2 + ((digamma(1+(1/tau)))/(tau^2)) + log(2)/(tau^2)
d2ldvdt <- -(dldv*dldt)
d2ldvdt
},
G.dev.incr = function(y,mu,sigma,nu,tau,...)
-2*dSEP3(y,mu,sigma,nu,tau,log=TRUE),
rqres = expression(rqres(pfun="pSEP3", type="Continuous", y=y, mu=mu, sigma=sigma, nu=nu, tau=tau)) ,
mu.initial = expression(mu <- (y+mean(y))/2),
sigma.initial = expression(sigma<- rep(sd(y), length(y))),
nu.initial = expression(nu <- rep(1, length(y))),
tau.initial = expression(tau <-rep(2, length(y))),
mu.valid = function(mu) TRUE,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) all(nu > 0),
tau.valid = function(tau) all(tau > 0),
y.valid = function(y) TRUE,
mean = function(mu, sigma, nu, tau) mu + (sigma * 2^(1/tau) * gamma(2/tau) * (nu - 1/nu)) / gamma(1/tau),
variance = function(mu, sigma, nu, tau) sigma^2 * ( (2^(2/tau) * gamma(3/tau) * (nu^2 + nu^(-2) - 1)) / gamma(1/tau) - ( (2^(1/tau) * gamma(2/tau) * (nu-1/nu)) / gamma(1/tau) )^2 )
),
class = c("gamlss.family","family"))
}
#-----------------------------------------------------------------
dSEP3 <- function(x, mu=0, sigma=1, nu=2, tau=2, log=FALSE)
{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0)) stop(paste("nu must be positive", "\n", ""))
if (any(tau <= 0)) stop(paste("tau must be positive", "\n", ""))
z <- (x-mu)/sigma
suppressWarnings(loglik1 <- -0.5*((nu*abs(z))^tau))
suppressWarnings(loglik2 <- -0.5*((abs(z)/nu)^tau))
# if (length(mu)>1) loglik <- ifelse(x < mu, loglik1, loglik2)
# else loglik <- if (x < mu) loglik1 else loglik2
loglik <- ifelse(x < mu, loglik1, loglik2)
loglik <- loglik-log(sigma)+log(nu)-log(1+(nu^2))-(1/tau)*log(2)-lgamma(1+(1/tau))
fy <- if(log==FALSE) exp(loglik) else loglik
fy
}
#-----------------------------------------------------------------
pSEP3 <- function(q, mu=0, sigma=1, nu=2, tau=2, lower.tail = TRUE, log.p = FALSE)
{
if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0)) stop(paste("nu must be positive", "\n", ""))
if (any(tau < 0)) stop(paste("tau must be positive", "\n", ""))
k <- nu^2
z1 <- nu*(q-mu)/(sigma*(2^(1/tau)))
z2 <- (q-mu)/(sigma*nu*(2^(1/tau)))
s1 <- (abs(z1)^tau)
s2 <- (abs(z2)^tau)
cdf1 <- 1-pgamma(s1,shape=1/tau,scale=1)
cdf2 <- 1+k*pgamma(s2,shape=1/tau,scale=1)
# if (length(mu)>1) cdf <- ifelse(q < mu, cdf1, cdf2)
# else cdf <- if (q < mu) cdf1 else cdf2
cdf <- ifelse(q < mu, cdf1, cdf2)
cdf <- cdf/(1+k)
if (length(tau)>1) cdf <- ifelse(tau>10000,
(q-(mu-(sigma/nu)))/(sigma*((1/nu)+nu)),
cdf)
else cdf <- if (tau>10000) (q-(mu-(sigma/nu)))/(sigma*((1/nu)+nu)) else cdf
if(lower.tail==TRUE) cdf <- cdf else cdf <- 1-cdf
if(log.p==FALSE) cdf <- cdf else cdf <- log(cdf)
cdf
}
#-----------------------------------------------------------------
qSEP3 <- function(p, mu=0, sigma=1, nu=2, tau=2, lower.tail = TRUE, log.p = FALSE)
{
if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0)) stop(paste("nu must be positive", "\n", ""))
if (any(tau < 0)) stop(paste("tau must be positive", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (any(p <= 0)|any(p >= 1)) stop(paste("p must be between 0 and 1", "\n", ""))
if (lower.tail==TRUE) p <- p else p <- 1-p
k <- nu^2
suppressWarnings(q1 <- mu -
(sigma*(2^(1/tau))/nu)*((qgamma( 1-p*(1+k), shape=1/tau, scale=1))^(1/tau)))
suppressWarnings(q2 <- mu +
(sigma*nu*(2^(1/tau)))*((qgamma( (-1/k)*(1-p*(1+k)), shape=1/tau, scale=1))^(1/tau)))
q <- ifelse(p < (1/(1+k)), q1, q2)
q
}
#-----------------------------------------------------------------
rSEP3 <- function(n, mu=0, sigma=1, nu=2, tau=2)
{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0)) stop(paste("nu must be positive", "\n", ""))
if (any(tau <= 0)) stop(paste("tau must be positive", "\n", ""))
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qSEP3(p,mu=mu,sigma=sigma,nu=nu,tau=tau)
r
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.