###Skew Normal Type 2
#SN2
SN2<-function (mu.link = "identity", sigma.link = "log", nu.link = "log")
{
mstats <- checklink("mu.link", "skew normal type 2",
substitute(mu.link), c("inverse", "log", "identity",
"own"))
dstats <- checklink("sigma.link", "skew normal type 2",
substitute(sigma.link), c("inverse", "log", "identity",
"own"))
vstats <- checklink("nu.link", "skew normal type 2",
substitute(nu.link), c("inverse", "log", "identity",
"own"))
structure(list(family = c("SN2", "skew normal type 2"),
parameters = list(mu = TRUE, sigma = TRUE, nu = TRUE), nopar = 3, type = "Continuous", mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)), nu.link = as.character(substitute(nu.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun, nu.linkfun = vstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv, nu.linkinv = vstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta, nu.dr = vstats$mu.eta,
dldm = function(y, mu, sigma, nu) {
z <- (y - mu)/sigma
dldma <- sign(z) * (nu * 2/(2 * sigma)) * ((nu *
abs(z))^(2 - 1))
dldmb <- sign(z) * (2/(2 * sigma * nu)) * ((abs(z)/nu)^(2 -
1))
dldm <- ifelse(y < mu, dldma, dldmb)
dldm
}, d2ldm2 = function(y, mu, sigma, nu) {
z <- (y - mu)/sigma
dldma <- sign(z) * (nu * 2/(2 * sigma)) * ((nu *
abs(z))^(2 - 1))
dldmb <- sign(z) * (2/(2 * sigma * nu)) * ((abs(z)/nu)^(2 -
1))
dldm <- ifelse(y < mu, dldma, dldmb)
d2ldm2 <- -dldm * dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2, -1e-15)
d2ldm2
}, dldd = function(y, mu, sigma, nu) {
z <- (y - mu)/sigma
dldda <- (nu * abs(z))^2
dlddb <- (abs(z)/nu)^2
dldd <- ifelse(y < mu, dldda, dlddb)
dldd <- dldd * (2/(2 * sigma)) - (1/sigma)
dldd
}, d2ldd2 = function(y, mu, sigma, nu) {
z <- (y - mu)/sigma
dldda <- (nu * abs(z))^2
dlddb <- (abs(z)/nu)^2
dldd <- ifelse(y < mu, dldda, dlddb)
dldd <- dldd * (2/(2 * sigma)) - (1/sigma)
d2ldd2 <- -dldd * dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2, -1e-15)
d2ldd2
}, dldv = function(y, mu, sigma, nu) {
z <- (y - mu)/sigma
dldva <- sign(z) * ((nu * abs(z))^2)
dldvb <- sign(z) * ((abs(z)/nu)^2)
dldv <- ifelse(y < mu, dldva, dldvb)
dldv <- dldv * (2/(2 * nu)) + (1/nu) - (2 * nu)/(1 +
(nu^2))
dldv
}, d2ldv2 = function(y, mu, sigma, nu) {
z <- (y - mu)/sigma
dldva <- sign(z) * ((nu * abs(z))^2)
dldvb <- sign(z) * ((abs(z)/nu)^2)
dldv <- ifelse(y < mu, dldva, dldvb)
dldv <- dldv * (2/(2 * nu)) + (1/nu) - (2 * nu)/(1 +
(nu^2))
d2ldv2 <- -dldv * dldv
d2ldv2 <- ifelse(d2ldv2 < -1e-04, d2ldv2, -1e-04)
d2ldv2
}, d2ldmdd = function(y, mu, sigma, nu) {
z <- (y - mu)/sigma
dldma <- sign(z) * (nu * 2/(2 * sigma)) * ((nu *
abs(z))^(2 - 1))
dldmb <- sign(z) * (2/(2 * sigma * nu)) * ((abs(z)/nu)^(2 -
1))
dldm <- ifelse(y < mu, dldma, dldmb)
dldda <- (nu * abs(z))^2
dlddb <- (abs(z)/nu)^2
dldd <- ifelse(y < mu, dldda, dlddb)
dldd <- dldd * (2/(2 * sigma)) - (1/sigma)
d2ldmdd <- -(dldm * dldd)
d2ldmdd
}, d2ldmdv = function(y, mu, sigma, nu) {
z <- (y - mu)/sigma
dldma <- sign(z) * (nu * 2/(2 * sigma)) * ((nu *
abs(z))^(2 - 1))
dldmb <- sign(z) * (2/(2 * sigma * nu)) * ((abs(z)/nu)^(2 -
1))
dldm <- ifelse(y < mu, dldma, dldmb)
dldva <- sign(z) * ((nu * abs(z))^2)
dldvb <- sign(z) * ((abs(z)/nu)^2)
dldv <- ifelse(y < mu, dldva, dldvb)
dldv <- dldv * (2/(2 * nu)) + (1/nu) - (2 * nu)/(1 +
(nu^2))
d2ldmdv <- -(dldm * dldv)
d2ldmdv
}, d2ldddv = function(y, mu, sigma, nu) {
z <- (y - mu)/sigma
dldda <- (nu * abs(z))^2
dlddb <- (abs(z)/nu)^2
dldd <- ifelse(y < mu, dldda, dlddb)
dldd <- dldd * (2/(2 * sigma)) - (1/sigma)
dldva <- sign(z) * ((nu * abs(z))^2)
dldvb <- sign(z) * ((abs(z)/nu)^2)
dldv <- ifelse(y < mu, dldva, dldvb)
dldv <- dldv * (2/(2 * nu)) + (1/nu) - (2 * nu)/(1 +
(nu^2))
d2ldddv <- -(dldd * dldv)
d2ldddv
}, G.dev.incr = function(y, mu, sigma, nu, ...) -2 * dSN2(y, mu, sigma, nu, log = TRUE),
rqres = expression(rqres(pfun = "pSN2", type = "Continuous", y = y, mu = mu, sigma = sigma, nu = nu)),
mu.initial = expression(mu <- (y + mean(y))/2),
sigma.initial = expression(sigma <- rep(sd(y), length(y))),
nu.initial = expression(nu <- rep(1, length(y))),
mu.valid = function(mu) TRUE,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) all(nu > 0),
y.valid = function(y) TRUE,
mean = function(mu, sigma, nu) mu + sigma * (sqrt(2)/sqrt(pi)) * (nu-nu^-1),
variance = function(mu, sigma, nu) sigma^2 * ((nu^2+nu^-2-1) - ((sqrt(2)/sqrt(pi)) * (nu-nu^-1))^2)
),
class = c("gamlss.family", "family"))
}
#dSN2
dSN2<-function (x, mu = 0, sigma = 1, nu = 2, log = FALSE)
{
if (any(sigma <= 0))
stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0))
stop(paste("nu must be positive", "\n", ""))
z <- (x - mu)/sigma
suppressWarnings(loglik1 <- -0.5 * ((nu * abs(z))^2))
suppressWarnings(loglik2 <- -0.5 * ((abs(z)/nu)^2))
loglik <- ifelse(x < mu, loglik1, loglik2)
loglik <- loglik - log(sigma) + log(nu) - log(1 + (nu^2)) -
(1/2) * log(2) - lgamma(1 + (1/2))
fy <- if (log == FALSE)
exp(loglik)
else loglik
fy
}
#pSN2
pSN2<-function (q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE,
log.p = FALSE)
{
if (any(sigma < 0))
stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0))
stop(paste("nu must be positive", "\n", ""))
k <- nu^2
z1 <- nu * (q - mu)/(sigma * (2^(1/2)))
z2 <- (q - mu)/(sigma * nu * (2^(1/2)))
s1 <- (abs(z1)^2)
s2 <- (abs(z2)^2)
cdf1 <- 1 - pgamma(s1, shape = 1/2, scale = 1)
cdf2 <- 1 + k * pgamma(s2, shape = 1/2, scale = 1)
cdf <- ifelse(q < mu, cdf1, cdf2)
cdf <- cdf/(1 + k)
if (length(2) > 1)
cdf <- ifelse(2 > 10000, (q - (mu - (sigma/nu)))/(sigma *
((1/nu) + nu)), cdf)
else cdf <- if (2 > 10000)
(q - (mu - (sigma/nu)))/(sigma * ((1/nu) + nu))
else cdf
if (lower.tail == TRUE)
cdf <- cdf
else cdf <- 1 - cdf
if (log.p == FALSE)
cdf <- cdf
else cdf <- log(cdf)
cdf
}
#qSN2
qSN2<-function (p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE,
log.p = FALSE)
{
if (any(sigma < 0))
stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0))
stop(paste("nu must be positive", "\n", ""))
if (log.p == TRUE)
p <- exp(p)
else p <- p
if (any(p <= 0) | any(p >= 1))
stop(paste("p must be between 0 and 1", "\n", ""))
if (lower.tail == TRUE)
p <- p
else p <- 1 - p
k <- nu^2
suppressWarnings(q1 <- mu - (sigma * (2^(1/2))/nu) * ((qgamma(1 -
p * (1 + k), shape = 1/2, scale = 1))^(1/2)))
suppressWarnings(q2 <- mu + (sigma * nu * (2^(1/2))) *
((qgamma((-1/k) * (1 - p * (1 + k)), shape = 1/2, scale = 1))^(1/2)))
q <- ifelse(p < (1/(1 + k)), q1, q2)
q
}
#rSN2
rSN2<-function (n, mu = 0, sigma = 1, nu = 2)
{
if (any(sigma <= 0))
stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0))
stop(paste("nu must be positive", "\n", ""))
if (any(n <= 0))
stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qSN2(p, mu = mu, sigma = sigma, nu = nu)
r
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.