###
#
# Native 'R CMD check' tests run on the 'curatedPCaData'-package
# Any exceptions will count as a failure for 'R CMD check' run (notably, does
# not require 'RUnit' or 'testthat' packages for testing)
#
###
##
# Testing of getPCa main functionality
##
# Test retrieval of TCGA with all assays
# Get default fetching of a MAE object based on short id
methods::is(curatedPCaData::getPCa("tcga"), "MultiAssayExperiment")
# Test retrieval of Taylor with a pre-specified subset of assays
# Get fetching of an assay subset
methods::is(curatedPCaData::getPCa("taylor", assays = c("gex.rma", "cibersort",
"scores")), "MultiAssayExperiment")
# Test a data fetch that should result in an error
# Test that an error is produced correctly for a study that does not exist
methods::is(try({curatedPCaData::getPCa("studyname_misspelled", assays =
c("foo", "bar"))}, silent=TRUE), "try-error")
# Test fetching of an assay that does not exist
# Test that an error is produced correctly for assays that do not exist
methods::is(try({curatedPCaData::getPCa("tcga", assays = "typo")},
silent=TRUE), "try-error")
# Test sample subtype subsetting during getPCa
# Get only primary samples from TCGA
all(curatedPCaData::getPCa("tcga", sampletypes = "primary")$sample_type ==
"primary")
# Test omitting metastatic samples from Chandran et al.
all(curatedPCaData::getPCa("chandran", sampletypes = c("primary", "normal")
)$sample_type %in% c("primary", "normal"))
##
# Testing of supporting summary functions etc
##
# Test fetching of study short ids and that the 19 studies originally available
# in Laajala et al. 2013 are retrieved correctly
# Tested function: curatedPCaData::getPCaStudies
studies <- curatedPCaData::getPCaStudies()
all(c("abida", "baca", "barbieri", "barwick", "chandran", "friedrich",
"hieronymus", "icgcca", "igc", "kim", "kunderfranco", "ren", "sun",
"taylor", "tcga", "true", "wallace", "wang", "weiner") %in% studies)
# Fetch MAE objects for further use
maes <- lapply(studies, FUN=\(id) { curatedPCaData::getPCa(id) })
names(maes) <- studies
# getPCaSummaryTable should summarize into a character matrix key instances and
# percentages for certain values for a given colData metadata variable
# Tested function: curatedPCaData::getPCaSummaryTable
inherits(curatedPCaData::getPCaSummaryTable(maes, var.name = "grade_group",
vals=c("<=6", "3+4", "4+3", "7", ">=8")), "matrix")
# getPCaSummaryTable should summarize into a character matrix event counts and
# follow-up times for a Surv-like data
# Tested function: curatedPCaData::getPCaSummarySurv
inherits(curatedPCaData::getPCaSummarySurv(maes, event.name =
"disease_specific_recurrence_status",
time.name = "days_to_disease_specific_recurrence"), "matrix")
# getPCaSummarySamples should return a list of length 2; first element
# containing unique assay names and N counts in each study, and second element
# a matrix with GEX/CNA/MUT combinations for overlap
# Tested function: curatedPCaData::getPCaSummarySamples
inherits(curatedPCaData::getPCaSummarySamples(maes), "list")
length(curatedPCaData::getPCaSummarySamples(maes)) == 2
# getPCaSummaryStudies should create a verbose character matrix depicting key
# characteristics for each study, such as sample counts, platforms, and special
# notes to be aware of
# Tested function: curatedPCaData::getPCaSummaryStudies,
# curatedPCaData::getPCaStudies
inherits(curatedPCaData::getPCaSummaryStudies(maes), "matrix")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.