#' Gibbs sampling algorithm for sc-Bayesian BPR finite mixture model
#'
#' \code{sc_bayes_bpr_fdmm} implements the Gibbs sampling algorithm for
#' performing clustering of single cells based on their DNA methylation
#' profiles, where the observation model is the Bernoulli distributed Probit
#' Regression likelihood.
#'
#' @param x A list of length I, where I are the total number of cells. Each
#' element of the list contains another list of length N, where N is the total
#' number of genomic regions. Each element of the inner list is an L x 2
#' matrix of observations, where 1st column contains the locations and the 2nd
#' column contains the methylation level of the corresponding CpGs.
#' @param K Integer denoting the number of clusters K.
#' @param pi_k Vector of length K, denoting the mixing proportions.
#' @param w A N x M x K array, where each column contains the basis function
#' coefficients for the corresponding cluster.
#' @param basis A 'basis' object. E.g. see \code{\link{create_rbf_object}}
#' @param w_0_mean The prior mean hyperparameter for w
#' @param w_0_cov The prior covariance hyperparameter for w
#' @param dir_a The Dirichlet concentration parameter, prior over pi_k
#' @param lambda The complexity penalty coefficient for penalized regression.
#' @param gibbs_nsim Argument giving the number of simulations of the Gibbs
#' sampler.
#' @param gibbs_burn_in Argument giving the burn in period of the Gibbs sampler.
#' @param inner_gibbs Logical, indicating if we should perform Gibbs sampling to
#' sample from the augmented BPR model.
#' @param gibbs_inner_nsim Number of inner Gibbs simulations.
#' @param is_parallel Logical, indicating if code should be run in parallel.
#' @param no_cores Number of cores to be used, default is max_no_cores - 1.
#' @param is_verbose Logical, print results during EM iterations
#'
#' @importFrom stats rmultinom rnorm
#' @importFrom MCMCpack rdirichlet
#' @importFrom truncnorm rtruncnorm
#' @importFrom mvtnorm rmvnorm
#' @importFrom utils txtProgressBar setTxtProgressBar
#' @export
sc_bayes_bpr_fdmm <- function(x, K = 2, pi_k = rep(1/K, K), w = NULL, basis = NULL, w_0_mean = NULL, w_0_cov = NULL,
dir_a = rep(1, K), lambda = 1/2, gibbs_nsim = 5000, gibbs_burn_in = 1000,
inner_gibbs = FALSE, gibbs_inner_nsim = 50, is_parallel = TRUE, no_cores = NULL, is_verbose = FALSE){
# Check that x is a list object
assertthat::assert_that(is.list(x))
assertthat::assert_that(is.list(x[[1]]))
if (is_parallel){ # If parallel mode is ON
# If number of cores is not given
if (is.null(no_cores)){ no_cores <- parallel::detectCores() - 2
}else{
if (no_cores >= parallel::detectCores()){ no_cores <- parallel::detectCores() - 1 }
}
if (is.na(no_cores)){ no_cores <- 2 }
if (no_cores > K){ no_cores <- K }
# Create cluster object
cl <- parallel::makeCluster(no_cores)
doParallel::registerDoParallel(cl)
}
I <- length(x) # Extract number of cells
N <- length(x[[1]]) # Extract number of promoter regions
if (is.null(basis)){ basis <- create_rbf_object(M = 3) }
M <- basis$M + 1 # Number of coefficient parameters
# Initialize priors over the parameters
if (is.null(w_0_mean)){ w_0_mean <- rep(0, M) }
if (is.null(w_0_cov)){ w_0_cov <- diag(4, M) }
prec_0 <- solve(w_0_cov) # Invert covariance matrix to get the precision matrix
w_0_prec_0 <- prec_0 %*% w_0_mean # Compute product of prior mean and prior precision matrix
# Matrices / Lists for storing results
w_pdf <- matrix(0, nrow = I, ncol = K) # Store weighted PDFs
post_prob <- matrix(0, nrow = I, ncol = K) # Hold responsibilities
C <- matrix(0, nrow = I, ncol = K) # Mixture components
C_prev <- C # Keep previous components
C_matrix <- matrix(0, nrow = I, ncol = K) # Total mixture components
NLL <- vector(mode = "numeric", length = gibbs_nsim)
NLL[1] <- 1e+100
H = y = z = V <- list()
for (k in 1:K){
H[[k]] <- vector("list", N) # List of concatenated design matrices
y[[k]] <- vector("list", N) # List of observed methylation data
z[[k]] <- vector("list", N) # List of auxiliary latent variables
V[[k]] <- vector("list", N) # List of posterior variances
}
len_y <- matrix(0, nrow = K, ncol = N) # Total CpG observations per region
sum_y <- matrix(0, nrow = K, ncol = N) # Total methylated CpGs per region
# Store mixing proportions draws
pi_draws <- matrix(NA_real_, nrow = gibbs_nsim, ncol = K)
# Store BPR coefficient draws
w_draws <- array(data = 0, dim = c(gibbs_nsim - gibbs_burn_in, N, M , K))
# Create design matrices
ind <- list() # Keep a list of promoter regions with CpG coverage
des_mat <- list() # Create design matrix for each cell for each promoter region
for (i in 1:I){
des_mat[[i]] <- vector(mode = "list", length = N)
# TODO: Should we do this??
des_mat[[i]] <- lapply(des_mat[[i]], function(x) x = NA)
ind[[i]] <- which(!is.na(x[[i]]))
if (is_parallel){ # TODO: Make this function faster?
des_mat[[i]][ind[[i]]] <- parallel::mclapply(X = x[[i]][ind[[i]]], FUN = function(y)
design_matrix(x = basis, obs = y[, 1])$H, mc.cores = no_cores)
}else{
des_mat[[i]][ind[[i]]] <- lapply(X = x[[i]][ind[[i]]], FUN = function(y) design_matrix(x = basis, obs = y[, 1])$H)
}
}
if (is_parallel){ # Stop parallel execution
parallel::stopCluster(cl)
doParallel::stopImplicitCluster()
}
# TODO: Initialize w in a sensible way via mini EM
if (is.null(w)){
# Perform checks for initial parameter values
out <- .do_scEM_checks(x = x, H = des_mat, reg_ind = ind, K = K, pi_k = NULL, w = w,
basis = basis, lambda = lambda, em_init_nstart = 5,
em_init_max_iter = 20, opt_itnmax = 30,
init_opt_itnmax = 50, is_parallel = is_parallel,
no_cores = no_cores, is_verbose = FALSE)
w <- out$w
pi_k <- out$pi_k
# ww <- array(data = 0, dim = c(N, M, I))
# for (i in 1:I){
# cov_prom <- which(!is.na(x[[i]]))
# # Compute regression coefficients using MLE
# ww[cov_prom, ,i] <- bpr_optim(x = x[[i]][cov_prom], w = NULL, basis = basis, fit_feature = NULL, cpg_dens_feat = FALSE,
# lambda = lambda, opt_itnmax = 20, is_parallel = TRUE, no_cores = 2)$W_opt
# }
# w <- array(data = ww[, ,sample(I, K)], dim = c(N, M, K))
# w <- array(data = 0, dim = c(N, M, K))
}
pi_draws[1, ] <- pi_k
if (is_verbose) { message("Starting Gibbs sampling...") }
# Show progress bar
pb <- txtProgressBar(min = 1, max = gibbs_nsim, style = 3)
##---------------------------------
# Start Gibbs sampling
##---------------------------------
for (t in 2:gibbs_nsim){
empty_C <- vector("integer", K)
## ---------------------------------------------------------------
# Compute weighted pdfs for each cluster
for (k in 1:K){
# Apply to each cell and only to regions with CpG coverage
w_pdf[, k] <- log(pi_k[k]) + vapply(X = 1:I, FUN = function(i) sum(vapply(X = ind[[i]], FUN = function(y)
bpr_likelihood(w = w[y, , k], H = des_mat[[i]][[y]], data = x[[i]][[y]], lambda = lambda, is_NLL = FALSE),
FUN.VALUE = numeric(1), USE.NAMES = FALSE)), FUN.VALUE = numeric(1), USE.NAMES = FALSE)
}
# Use the logSumExp trick for numerical stability
Z <- apply(w_pdf, 1, .log_sum_exp)
# Get actual posterior probabilities, i.e. responsibilities
post_prob <- exp(w_pdf - Z)
NLL[t] <- -sum(Z) # Evaluate NLL
## -------------------------------------------------------------------
# Draw mixture components for ith simulation
# Sample one point from a Multinomial i.e. ~ Discrete
for (i in 1:I){ C[i, ] <- rmultinom(n = 1, size = 1, post_prob[i, ]) }
# ## -------------------------------------------------------------------
# # Check for empty clusters
# cell_changed <- c()
# for (k in 1:K){
# Cn_k <- colSums(C)
# if (Cn_k[k] == 0){
# celli <- sample(which(C[, which.max(Cn_k)] == 1), 3)
# while(any(celli %in% cell_changed)){ celli <- sample(which(C[, which.max(Cn_k)] == 1), 1)}
# cell_changed <- c(cell_changed, celli)
# C[celli, ] <- 0; C[celli, k] <- 1
# }
# }
# print(colSums(C))
# TODO: Should we keep all data
if (t > gibbs_burn_in){ C_matrix <- C_matrix + C }
## -------------------------------------------------------------------
# Update mixing proportions using updated cluster component counts
Ci_k <- colSums(C)
if (is_verbose) {cat("\r", Ci_k) }
pi_k <- as.vector(rdirichlet(n = 1, alpha = dir_a + Ci_k))
pi_draws[t, ] <- pi_k
# Matrix to keep promoters with no CpG coverage
empty_region <- matrix(0, nrow = N, ncol = K)
for (k in 1:K){
# Which cells are assigned to cluster k
C_idx <- which(C[, k] == 1)
# TODO: Handle cases when we have empty clusters...
if (length(C_idx) == 0){
if (is_verbose) { message("Warning: Empty cluster...") }
empty_C[k] <- 1
next
}
# Check if current clusters ids are not equal to previous ones
if (!identical(C[, k], C_prev[, k])){
if (is_verbose) { message(t, ": Not identical in cluster ", k) }
# Iterate over each promoter region
for (n in 1:N){
# Initialize empty vector for observed methylation data
yy <- vector(mode = "integer")
# Concatenate the nth promoter from all cells in cluster k
tmp <- lapply(des_mat, "[[", n)[C_idx]
# TODO: Is this NULL or NA???
tmp <- do.call(rbind, tmp[!is.na(tmp)])
# TODO: Check when we have empty promoters....
if (is.null(tmp)) {
H[[k]][[n]] <- NA
empty_region[n, k] <- 1
}else{
H[[k]][[n]] <- tmp
# Obtain the corresponding methylation levels
for (cell in C_idx){
obs <- x[[cell]][[n]]
if (length(obs) > 1){ yy <- c(yy, obs[, 2]) }
}
# Precompute for faster computations
len_y[k, n] <- length(yy)
sum_y[k, n] <- sum(yy)
y[[k]][[n]] <- yy
z[[k]][[n]] <- rep(NA_real_, len_y[k, n])
# Compute posterior variance of w_nk
V[[k]][[n]] <- solve(prec_0 + crossprod(H[[k]][[n]], H[[k]][[n]]))
}
}
}
for (n in 1:N){
# In case we have no CpG data in this promoter
if (is.vector(H[[k]][[n]])){ next }
# Perform Gibbs sampling on the augmented BPR model
if (inner_gibbs & t > 4){
w_inner <- matrix(0, nrow = gibbs_inner_nsim, ncol = M)
w_inner[1, ] <- w[n, , k]
for (tt in 2:gibbs_inner_nsim){
# Update Mean of z
mu_z <- H[[k]][[n]] %*% w_inner[tt - 1, ]
# Draw latent variable z from z | w, y, X
if (sum_y[k, n] == 0){
z[[k]][[n]] <- rtruncnorm(len_y[k, n], mean = mu_z, sd = 1, a = -Inf, b = 0)
}else if (sum_y[k, n] == len_y[k, n]){
z[[k]][[n]] <- rtruncnorm(len_y[k, n], mean = mu_z, sd = 1, a = 0, b = Inf)
}else{
z[[k]][[n]][y[[k]][[n]] == 1] <- rtruncnorm(sum_y[k, n], mean = mu_z[y[[k]][[n]] == 1], sd = 1, a = 0, b = Inf)
z[[k]][[n]][y[[k]][[n]] == 0] <- rtruncnorm(len_y[k, n] - sum_y[k, n], mean = mu_z[y[[k]][[n]] == 0], sd = 1, a = -Inf, b = 0)
}
# Compute posterior mean of w
Mu <- V[[k]][[n]] %*% (w_0_prec_0 + crossprod(H[[k]][[n]], z[[k]][[n]]))
# Draw variable \w from its full conditional: \w | z, X
if (M == 1){ w_inner[tt, ] <- c(rnorm(n = 1, mean = Mu, sd = V[[k]][[n]])) }
else{ w_inner[tt, ] <- c(rmvnorm(n = 1, mean = Mu, sigma = V[[k]][[n]])) }
}
if (M == 1){ w[n, , k] <- mean(w_inner[-(1:(gibbs_inner_nsim/2)), ]) }
else{ w[n, , k] <- colMeans(w_inner[-(1:(gibbs_inner_nsim/2)), ]) }
}else{
##-----------------------------------------=======================------------==================-===========-=-=-=-=-=-=-=
# TODO:: Should we run this twice to update the z parameter!!!
for (l in 1:3){
# Update Mean of z
mu_z <- H[[k]][[n]] %*% w[n, , k]
# Draw latent variable z from its full conditional: z | w, y, X
if (sum_y[k, n] == 0){
z[[k]][[n]] <- rtruncnorm(len_y[k, n], mean = mu_z, sd = 1, a = -Inf, b = 0)
}else if (sum_y[k, n] == len_y[k, n]){
z[[k]][[n]] <- rtruncnorm(len_y[k, n], mean = mu_z, sd = 1, a = 0, b = Inf)
}else{
z[[k]][[n]][y[[k]][[n]] == 1] <- rtruncnorm(sum_y[k, n], mean = mu_z[y[[k]][[n]] == 1], sd = 1, a = 0, b = Inf)
z[[k]][[n]][y[[k]][[n]] == 0] <- rtruncnorm(len_y[k, n] - sum_y[k, n], mean = mu_z[y[[k]][[n]] == 0], sd = 1, a = -Inf, b = 0)
}
# Compute posterior mean of w
Mu <- V[[k]][[n]] %*% (w_0_prec_0 + crossprod(H[[k]][[n]], z[[k]][[n]]))
# Draw variable \w from its full conditional: \w | z, X
if (M == 1){ w[n, , k] <- c(rnorm(n = 1, mean = Mu, sd = V[[k]][[n]])) }
else{ w[n, , k] <- c(rmvnorm(n = 1, mean = Mu, sigma = V[[k]][[n]])) }
}
}
}
}
# For each empty promoter region, take the methyation profile of the
# promoter regions that belong to another cluster
for (n in 1:N){
clust_empty_ind <- which(empty_region[n, ] == 1)
# No empty promoter regions
if (length(clust_empty_ind) == 0){ next }
# Case that should never happen with the right preprocessing step
else if (length(clust_empty_ind) == K){
for (k in 1:K){ w[n, , k] <- c(rmvnorm(1, w_0_mean, w_0_cov)) }
}else{
# TODO: Perform a better imputation approach...
cover_ind <- which(empty_region[n, ] == 0)
# Randomly choose a cluster to obtain the methylation profiles
k_imp <- sample(length(cover_ind), 1)
for (k in seq_along(clust_empty_ind)){
w[n, , clust_empty_ind[k]] <- w[n, , k_imp]
}
}
}
# Handle empty clusters
dom_C <- which.max(Ci_k)
for (k in 1:K){
if (empty_C[k] == 1){
w[, , k] <- w[, , dom_C]
# message(dom_C)
# for (n in 1:N){
# # If we have one basis function
# if (M == 1){ w[n, , k] <- c(rnorm(n = 1, mean = mean(w[n, , dom_C], sd = 1e-8))) }
# else{ w[n, ,k] <- c(rmvnorm(n = 1, mean = w[n, , dom_C], sigma = diag(1e-15, M))) }
#
# # # Get all weights except from cluster k
# # w_exc_k <- w[n, , dom_C]
# # if (is.matrix(w_exc_k)){ w[n, ,k] <- c(rmvnorm(n = 1, mean = rowMeans(w_exc_k), sigma = diag(M))) }
# # else{ w[n, ,k] <- c(rmvnorm(n = 1, mean = w_exc_k, sigma = diag(0.05, M))) }
# }
}
}
C_prev <- C # Make current cluster indices same as previous
if (t > gibbs_burn_in){w_draws[t - gibbs_burn_in, , ,] <- w}
setTxtProgressBar(pb,t)
}
close(pb)
if (is_verbose) { message("Finished Gibbs sampling...") }
##-----------------------------------------------
if (is_verbose) { message("Computing summary statistics...") }
# Compute summary statistics from Gibbs simulation
if (K == 1){ pi_post <- mean(pi_draws[gibbs_burn_in:gibbs_nsim, ]) }
else{ pi_post <- colMeans(pi_draws[gibbs_burn_in:gibbs_nsim, ]) }
C_post <- C_matrix / (gibbs_nsim - gibbs_burn_in)
w_post <- array(0, dim = c(N, M, K))
for(k in 1:K){ w_post[, , k] <- colSums(w_draws[, , , k]) / (gibbs_nsim - gibbs_burn_in) }
# Object to keep input data
dat <- list(K = K, N = N, I = I, M = M, basis = basis, dir_a = dir_a, lambda = lambda,
w_0_mean = w_0_mean, w_0_cov = w_0_cov, gibbs_nsim = gibbs_nsim, gibbs_burn_in = gibbs_burn_in)
# Object to hold all the Gibbs draws
draws <- list(pi = pi_draws, w = w_draws, C = C_matrix, NLL = NLL)
# Object to hold the summaries for the parameters
summary <- list(pi = pi_post, w = w_post, C = C_post)
# Create sc_bayes_bpr_fdmm object
obj <- structure(list(summary = summary, draws = draws, dat = dat),
class = "sc_bayes_bpr_fdmm")
return(obj)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.