R/fct_06_pathway.R

Defines functions remove_pathway_id_second remove_pathway_id kegg_pathway get_pathway_list_data pathway_select_data get_pgsea_plot_all_samples_data get_pgsea_plot_data pgsea_plot_all reactome_data fgsea_data get_gsva_plot_data gsva_data plot_gsva plot_pgsea pgsea_data gage_data

Documented in fgsea_data gage_data get_gsva_plot_data get_pathway_list_data get_pgsea_plot_all_samples_data get_pgsea_plot_data gsva_data kegg_pathway pathway_select_data pgsea_data pgsea_plot_all plot_gsva plot_pgsea reactome_data remove_pathway_id remove_pathway_id_second

#' fct_06_pathway.R This file holds all of the main data analysis functions
#' associated with eighth tab of the iDEP website.
#'
#'
#' @section fct_06_pathway.R functions:
#'
#'
#' @name fct_06_pathway.R
NULL

#' Pathway analysis with gage package
#'
#' Run pathway analysis with the gage package using the results
#' from the limma_value function.
#'
#' @param select_go String designating the section of the database to query for
#'   pathway analysis. See \code{\link{gmt_category}()} for choices.
#' @param select_contrast String designating the comparison from DEG analysis to
#'  filter for the significant genes. See the 'comparison' element from the list
#'  returned from \code{\link{limma_value}()} for options.
#' @param min_set_size Minimum gene set size for a pathway
#' @param max_set_size Maximum gene set size for a pathway
#' @param limma Results list from the \code{\link{limma_value}()}
#' @param gene_p_val_cutoff Significant p-value to filter
#'  the top genes fold change by
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database. See list returned from \code{\link{read_gene_sets}()}
#' @param absolute_fold TRUE/FALSE to use the absolute value of the fold
#'  change
#' @param pathway_p_val_cutoff Significant p-value to determine
#'  enriched pathways
#' @param n_pathway_show Number of pathways to return in final
#'  result
#'
#' @export
#' @return A data frame with the results of the pathway analysis.
#'  The data frame has five columns for the direction of the
#'  regulation, the pathway description, the stat value, the
#'  number of overlapping genes, and the p-value.
#'
#' @family pathway functions
gage_data <- function(select_go,
                      select_contrast,
                      min_set_size,
                      max_set_size,
                      limma,
                      gene_p_val_cutoff,
                      gene_sets,
                      absolute_fold,
                      pathway_p_val_cutoff,
                      n_pathway_show) {
  if (select_go == "ID not recognized!") {
    return(as.data.frame("Gene ID not recognized."))
  }
  if (is.null(select_contrast)) {
    return(NULL)
  }
  my_range <- c(min_set_size, max_set_size)
  no_sig <- as.data.frame("No significant pathway found.")
  if (length(limma$top_genes) == 0) {
    return(no_sig)
  }

  if (length(limma$comparisons) == 1) {
    top_1 <- limma$top_genes[[1]]
  } else {
    top <- limma$top_genes
    ix <- match(select_contrast, names(top))
    if (is.na(ix)) {
      return(no_sig)
    }
    top_1 <- top[[ix]]
  }
  if (dim(top_1)[1] == 0) {
    return(no_sig)
  }
  colnames(top_1) <- c("Fold", "FDR")

  top_1 <- top_1[which(top_1$FDR < gene_p_val_cutoff), ]

  gmt <- gene_sets
  if (length(gene_sets) == 0) {
    return(as.data.frame("No gene set found!"))
  }

  fold <- top_1[, 1]
  names(fold) <- rownames(top_1)
  if (absolute_fold) {
    fold <- abs(fold)
  }
  paths <- gage::gage(fold, gsets = gmt, ref = NULL, samp = NULL)

  paths <- rbind(paths$greater, paths$less)

  if (dim(paths)[1] < 1 | dim(paths)[2] < 6) {
    return(no_sig)
  }
  top_1 <- paths[, c("stat.mean", "set.size", "q.val")]
  colnames(top_1) <- c("statistic", "Genes", "adj.Pval")
  top_1 <- top_1[order(top_1[, 3]), ]
  if (length(which(top_1[, 3] <= pathway_p_val_cutoff)) == 0) {
    return(no_sig)
  }
  top_1 <- top_1[which(top_1[, 3] <= pathway_p_val_cutoff), , drop = FALSE]
  if (dim(top_1)[1] > n_pathway_show) {
    top_1 <- top_1[1:n_pathway_show, , drop = FALSE]
  }
  top_1 <- as.data.frame(top_1)
  top_1 <- cbind(rep(select_contrast, dim(top_1)[1]), row.names(top_1), top_1)
  top_1$statistic <- as.character(round(as.numeric(top_1$statistic), 4))
  top_1$adj.Pval <- sprintf("%-2.1e", as.numeric(top_1$adj.Pval))
  top_1[, 2] <- as.character(top_1[, 2])
  top_1[, 1] <- as.character(top_1[, 1])
  colnames(top_1)[1] <- "Direction"
  colnames(top_1)[2] <- paste("GAGE analysis:", gsub("-", " vs ", select_contrast))
  top_1[which(top_1[, 3] > 0), 1] <- "Up"
  top_1[which(top_1[, 3] < 0), 1] <- "Down"
  top_1 <- top_1[order(top_1$Direction, as.numeric(top_1$adj.Pval)), ]
  top_1[duplicated(top_1[, 1]), 1] <- ""
  rownames(top_1) <- seq(1, nrow(top_1), 1)

  return(top_1)
}

#' Pathway analysis with the PGSEA package
#'
#' Run pathway analysis with the PGSEA package using the results
#' from the limma_value function.
#'
#' @param processed_data Matrix of gene data that has been through
#'   \code{\link{pre_process}()}
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database. See returned list from \code{\link{read_gene_sets}()}
#' @param my_range Vector of the (min_set_size, max_set_size)
#' @param pathway_p_val_cutoff Significant p-value to determine
#'  enriched pathways
#' @param n_pathway_show Number of significant pathways to show
#'
#' @export
#' @return A list with a data frame and a numeric value that is used
#'  in the \code{\link{plot_pgsea}()} to create a heatmap.
#'
#' @family pathway functions
pgsea_data <- function(processed_data,
                       gene_sets,
                       my_range,
                       pathway_p_val_cutoff,
                       n_pathway_show) {
  subtype <- detect_groups(colnames(processed_data))

  # Cut off to report in PGSEA. Otherwise NA
  p_value <- 0.01
  if (length(gene_sets) == 0) {
    return(list(pg3 = NULL, best = 1))
  }

  pg <- PGSEA::PGSEA(
    processed_data - rowMeans(processed_data),
    cl = gene_sets,
    range = my_range,
    p.value = TRUE,
    weighted = FALSE
  )

  pg_results <- pg$results
  # Remove se/wrts with all missing(non-signficant)
  pg_results <- pg_results[rowSums(is.na(pg_results)) < ncol(pg_results), ]
  if (dim(pg_results)[1] < 2) {
    return()
  }
  best <- max(abs(pg_results))

  if (length(subtype) < 4 || length(unique(subtype)) < 2 ||
    length(unique(subtype)) == dim(processed_data)[2]) {
    pg_results <- pg_results[order(-apply(pg_results, 1, sd)), ]
    return(list(pg_data = pg_results[1:top, ], best <- best))
  }

  cat("\nComputing P values using ANOVA\n")
  path_p_value <- function(k,
                           pg_results,
                           subtype) {
    return(summary(aov(pg_results[k, ] ~ subtype))[[1]][["Pr(>F)"]][1])
  }
  p_values <- sapply(1:dim(pg_results)[1], function(x) {
    path_p_value(
      k = x,
      pg_results = pg_results,
      subtype = subtype
    )
  })
  p_values <- stats::p.adjust(p_values, "fdr")


  if (sort(p_values)[2] > pathway_p_val_cutoff) {
    return(list(pg_data = NULL, best = best))
  } else {
    n_sig_t <- rowSums(pg$p.results < p_value)

    result <- cbind(as.matrix(p_values), n_sig_t, pg_results)
    result <- result[order(result[, 1]), ]
    result <- result[which(result[, 1] < pathway_p_val_cutoff), , drop = F]

    pg_results <- result[, -2]

    # When there is only 1 left in the matrix pg_results becomes a vector
    if (sum(p_values < pathway_p_val_cutoff) == 1) {
      pg_data <- t(as.matrix(pg_results))
      pg_data <- rbind(pg_data, pg_data)
    } else {
      if (dim(pg_results)[1] > n_pathway_show) {
        pg_data <- pg_results[1:n_pathway_show, ]
      } else {
        pg_data <- pg_results
      }
    }

    rownames(pg_data) <- sapply(rownames(pg_data), extract_under)
    a <- sprintf("%-3.2e", pg_data[, 1])
    rownames(pg_data) <- paste(a, rownames(pg_data), sep = " ")
    pg_data <- pg_data[, -1]

    # Sort by SD
    pg_data <- pg_data[order(-apply(pg_data, 1, sd)), ]

    return(list(
      pg_data = pg_data,
      best = best
    ))
  }
}

#' Heatmap of PGSEA pathway analysis
#'
#' Create a heatmap from the pathway analysis using the PGSEA
#' package. The heatmap shows the expression in each group for
#' each significantly enriched pathway.
#'
#' @param my_range Vector of the (min_set_size, max_set_size)
#' @param processed_data Matrix of gene data that has been through
#'   \code{\link{pre_process}()}
#' @param contrast_samples Sample columns that correspond to the
#'  selected comparison
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database. See list returned from \code{\link{read_gene_sets}()}
#' @param pathway_p_val_cutoff Significant p-value to determine
#'  enriched pathways
#' @param n_pathway_show Number of significant pathways to show
#' @param select_go pathway category.
#' @param show_pathway_id Whether to show pathway id for GO and KEGG pathways
#' @param plot_colors A vector of colors for activated/surpressed pathways
#' @export
#' @return A heatmap plot with the rows as the significant
#'  pathways and the columns corresponding to the samples.
#'
#' @family pathway functions
plot_pgsea <- function(my_range,
                       processed_data,
                       contrast_samples,
                       gene_sets,
                       pathway_p_val_cutoff,
                       n_pathway_show,
                       select_go,
                       show_pathway_id,
                       margin = c(3, 1, 13, 38),
                       plot_colors = NULL) {
  genes <- processed_data[, contrast_samples]
  if (length(gene_sets) == 0) {
    return(
      NULL
    )
  } else {
    subtype <- detect_groups(colnames(genes))
    result <- pgsea_data(
      processed_data = genes,
      gene_sets = gene_sets,
      my_range = my_range,
      pathway_p_val_cutoff = pathway_p_val_cutoff,
      n_pathway_show = n_pathway_show
    )

    if (is.null(result$pg_data)) {
      plot.new()
      text(0.5, 1, "No significant pathway found!")
    } else {

       # remove pathway ID if selected so
      if (!show_pathway_id) {
        row.names(result$pg_data) <- remove_pathway_id_second(
          strings = row.names(result$pg_data),
          select_go = select_go
        )
      }
      
      if(is.null(plot_colors)){
        color_vec <- PGSEA::.rwb
      }
      else{
        color_vec_1 <- colorRampPalette(c(plot_colors[[1]][1],"white"))(25)
        color_vec_2 <- colorRampPalette(c("white",plot_colors[[1]][2]))(25)
        color_vec <- c(color_vec_1,color_vec_2)
      }
      
      PGSEA::smcPlot(
        result$pg_data,
        factor(subtype),
        scale = c(-max(result$pg_data), max(result$pg_data)),
        show.grid = T,
        margins = margin,
        col = color_vec,
        cex.lab = 0.5
      )
    }
  }
}

#' Heatmap of GSVA pathway analysis
#'
#' Create a heatmap from the pathway analysis using the GSVA
#' package. The heatmap shows the expression in each group for
#' each significantly enriched pathway.
#'
#' @param my_range Vector of the (min_set_size, max_set_size)
#' @param processed_data Matrix of gene data that has been through
#'   \code{\link{pre_process}()}
#' @param contrast_samples Sample columns that correspond to the
#'  selected comparison
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database. See list returned from \code{\link{read_gene_sets}()}
#' @param pathway_p_val_cutoff Significant p-value to determine
#'  enriched pathways
#' @param n_pathway_show Number of significant pathways to show
#' @param select_go pathway category.
#' @param show_pathway_id Whether to show pathway id for GO and KEGG pathways
#'
#' @export
#' @return A heatmap plot with the rows as the significant
#'  pathways and the columns corresponding to the samples.
#'
#' @family pathway functions
plot_gsva <- function(my_range,
                       processed_data,
                       contrast_samples,
                       gene_sets,
                       pathway_p_val_cutoff,
                       n_pathway_show,
                       select_go,
                       show_pathway_id,
                       algorithm = "gsva") {
  genes <- processed_data[, contrast_samples]
  if (length(gene_sets) == 0) {
    plot.new()
    text(0.5, 1, "No significant pathway found!")
  } else {
    subtype <- detect_groups(colnames(genes))
    result <- gsva_data(
      processed_data = genes,
      gene_sets = gene_sets,
      my_range = my_range,
      pathway_p_val_cutoff = pathway_p_val_cutoff,
      n_pathway_show = n_pathway_show,
      algorithm = algorithm
    )

    # remove notificatoin from last analysis
    removeNotification("small_sample_size")
    if(ncol(genes) <= 10) {
      showNotification(
        ui = paste("Only ", ncol(genes), "samples! GSVA results are not reliable when sample sizes are small (<=10)"),
        id = "small_sample_size",
        duration = NULL,
        type = "error"
      )

    }

    if (is.null(result$pg_data)) {
      plot.new()
      text(0.5, 1, "No significant pathway found!")
    } else {

       # remove pathway ID if selected so
      if (!show_pathway_id) {
        row.names(result$pg_data) <- remove_pathway_id_second(
          strings = row.names(result$pg_data),
          select_go = select_go
        )
      }

      if(algorithm == "ssgsea") {
        result$pg_data <- result$pg_data - rowMeans(result$pg_data)        
      }



      PGSEA::smcPlot(
        result$pg_data,
        factor(subtype),
        scale = c(-max(result$pg_data), max(result$pg_data)),
        show.grid = T,
        margins = c(3, 1, 13, 38),
        col = PGSEA::.rwb,
        cex.lab = 0.5
      )
    }
  }
}


#' Pathway analysis with the GSVA package
#'
#' Run pathway analysis with the GSVA package using the results
#' from the limma_value function.
#'
#' @param processed_data Matrix of gene data that has been through
#'   \code{\link{pre_process}()}
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database. See returned list from \code{\link{read_gene_sets}()}
#' @param my_range Vector of the (min_set_size, max_set_size)
#' @param pathway_p_val_cutoff Significant p-value to determine
#'  enriched pathways
#' @param n_pathway_show Number of significant pathways to show
#' @param algorithm  Options for GSVA: plage, ssgsea, zscore or gsva
#'
#' @export
#' @return A list with a data frame and a numeric value that is used
#'  in the \code{\link{plot_gsva}()} to create a heatmap.
#'
#' @family pathway functions
gsva_data <- function(processed_data,
                       gene_sets,
                       my_range,
                       pathway_p_val_cutoff,
                       n_pathway_show,
                       algorithm = "gsva") {
  subtype <- detect_groups(colnames(processed_data))

  # Cut off to report in PGSEA. Otherwise NA
  p_value <- 0.01
  if (length(gene_sets) == 0) {
    return(list(pg3 = NULL, best = 1))
  }

  pg_results <- GSVA::gsva(processed_data, gene_sets, verbose = FALSE, method = algorithm)

  # Remove se/wrts with all missing(non-signficant)
  pg_results <- pg_results[rowSums(is.na(pg_results)) < ncol(pg_results), ]
  if (dim(pg_results)[1] < 2) {
    return()
  }
  best <- max(abs(pg_results))

  if (length(subtype) < 4 || length(unique(subtype)) < 2 ||
    length(unique(subtype)) == dim(processed_data)[2]) {
    pg_results <- pg_results[order(-apply(pg_results, 1, sd)), ]
    return(list(pg_data = pg_results[1:top, ], best <- best))
  }

  cat("\nComputing P values using ANOVA\n")
  path_p_value <- function(k,
                           pg_results,
                           subtype) {
    return(summary(aov(pg_results[k, ] ~ subtype))[[1]][["Pr(>F)"]][1])
  }
  p_values <- sapply(1:dim(pg_results)[1], function(x) {
    path_p_value(
      k = x,
      pg_results = pg_results,
      subtype = subtype
    )
  })
  p_values <- stats::p.adjust(p_values, "fdr")


  if (sort(p_values)[2] > pathway_p_val_cutoff) {
    return(list(pg_data = NULL, best = best))
  } else {
    result <- cbind(as.matrix(p_values), pg_results)
    result <- result[order(result[, 1]), ]
    result <- result[which(result[, 1] < pathway_p_val_cutoff), , drop = FALSE]

    pg_results <- result

    # When there is only 1 left in the matrix pg_results becomes a vector
    if (sum(p_values < pathway_p_val_cutoff) == 1) {
      pg_data <- t(as.matrix(pg_results))
      pg_data <- rbind(pg_data, pg_data)
    } else {
      if (dim(pg_results)[1] > n_pathway_show) {
        pg_data <- pg_results[1:n_pathway_show, ]
      } else {
        pg_data <- pg_results
      }
    }

    rownames(pg_data) <- sapply(rownames(pg_data), extract_under)
    a <- sprintf("%-3.2e", pg_data[, 1])
    rownames(pg_data) <- paste(a, rownames(pg_data), sep = " ")
    pg_data <- pg_data[, -1]

    # Sort by SD
    pg_data <- pg_data[order(-apply(pg_data, 1, sd)), ]

    return(list(
      pg_data = pg_data,
      best = best
    ))
  }
}

#' Data from GSVA plot
#'
#' Get the data matrix that is plotted in the heatmap created by
#' the \code{\link{plot_pgsea}()}.
#'
#' @param my_range Vector of the (min_set_size, max_set_size)
#' @param data Matrix of gene data that has been through
#'  \code{\link{pre_process}()}
#' @param select_contrast String designating the comparison from DEG analysis to
#'  filter for the significant genes. See the 'comparison' element from the list
#'  returned from \code{\link{limma_value}()} for options.
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database. See list returned from \code{\link{read_gene_sets}()}
#' @param sample_info Matrix of experiment design information for grouping
#' @param select_factors_model The selected factors for the model
#'  expression
#' @param select_model_comprions String designating selected comparisons to
#'  analyze in the DEG analysis. See \code{\link{list_model_comparisons_ui}()}
#'  for options
#' @param pathway_p_val_cutoff Significant p-value to determine
#'  enriched pathways
#' @param n_pathway_show Number of pathways to return in final
#' @param algorithm  Options for GSVA: plage, ssgsea, zscore or gsva
#'  result
#'
#' @export
#' @return Data matrix with the rownames the descriptions of pathways
#'  and the matrix the returned expression calculation from the PGSEA
#'  package.
#'
#' @family pathway functions
get_gsva_plot_data <- function(my_range,
                                data,
                                select_contrast,
                                gene_sets,
                                sample_info,
                                select_factors_model,
                                select_model_comprions,
                                pathway_p_val_cutoff,
                                n_pathway_show,
                                algorithm = "gsva") {
  # Find sample related to the comparison
  iz <- match(detect_groups(colnames(data)), unlist(strsplit(select_contrast, "-")))
  iz <- which(!is.na(iz))

  if (!is.null(sample_info) & !is.null(select_factors_model) & length(select_model_comprions) > 0) {
    # Strings like: "groups: mutant vs. control"
    comparisons <- gsub(".*: ", "", select_model_comprions)
    comparisons <- gsub(" vs\\. ", "-", comparisons)
    # Corresponding factors
    factors_vector <- gsub(":.*", "", select_model_comprions)
    # Selected contrast lookes like: "mutant-control"
    ik <- match(select_contrast, comparisons)
    if (is.na(ik)) {
      iz <- 1:(dim(data)[2])
    } else {
      # Interaction term, use all samples
      # Corresponding factors
      selected_factor <- factors_vector[ik]
      iz <- match(sample_info[, selected_factor], unlist(strsplit(select_contrast, "-")))
      iz <- which(!is.na(iz))
    }
  }

  if (grepl("I:", select_contrast)) {
    # If it is factor design use all samples
    iz <- 1:(dim(data)[2])
  }
  if (is.na(iz)[1] | length(iz) <= 1) {
    iz <- 1:(dim(data)[2])
  }

  genes <- data
  genes <- genes[, iz]

  subtype <- detect_groups(colnames(genes))

  if (length(gene_sets) == 0) {
    return(as.data.frame("No significant pathway!"))
  } else {
    result <- gsva_data(
      processed_data = genes,
      gene_sets = gene_sets,
      my_range = my_range,
      pathway_p_val_cutoff = pathway_p_val_cutoff,
      n_pathway_show = n_pathway_show,
      algorithm = algorithm
    )

    if (is.null(result$pg_data)) {
      return(as.data.frame("No significant pathway!"))
    } else {
      return(as.data.frame(result$pg_data))
    }
  }
}


#' Pathway analysis with the FGSEA package
#'
#' Run pathway analysis with the FGSEA package using the results
#' from the \code{\link{limma_value}()}.
#'
#' @param select_contrast String designating the comparison from DEG analysis to
#'  filter for the significant genes. See the 'comparison' element from the list
#'  returned from \code{\link{limma_value}()} for options.
#' @param my_range Vector of the (min_set_size, max_set_size)
#' @param limma Results list from the \code{\link{limma_value}()}
#' @param gene_p_val_cutoff Significant p-value to filter
#'  the top genes fold change by
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database. See results list from
#'  \code{\link{read_gene_sets}()}.
#' @param absolute_fold TRUE/FALSE to use the absolute value of the fold
#'  change
#' @param pathway_p_val_cutoff Significant p-value to determine
#'  enriched pathways
#' @param n_pathway_show Number of pathways to return in final
#'  result
#'
#' @export
#' @return A data frame with the results of the pathway analysis.
#'  The data frame has five columns for the direction of the
#'  regulation, the pathway description, the stat value, the
#'  number of overlapping genes, and the p-value.
#'
#' @family pathway functions
fgsea_data <- function(select_contrast,
                       my_range,
                       limma,
                       gene_p_val_cutoff,
                       gene_sets,
                       absolute_fold,
                       pathway_p_val_cutoff,
                       n_pathway_show) {
  nPerm <- 10000 # number of permutations

  no_sig <- as.data.frame("No significant pathway found.")
  if (length(limma$top_genes) == 0) {
    return(no_sig)
  }
  if (length(limma$comparisons) == 1) {
    top_1 <- limma$top_genes[[1]]
  } else {
    top <- limma$top_genes
    ix <- match(select_contrast, names(top))
    if (is.na(ix)) {
      return(no_sig)
    }
    top_1 <- top[[ix]]
  }
  if (dim(top_1)[1] == 0) {
    return(no_sig)
  }
  colnames(top_1) <- c("Fold", "FDR")

  # Remove some genes
  top_1 <- top_1[which(top_1$FDR < gene_p_val_cutoff), ]

  if (length(gene_sets) == 0) {
    return(as.data.frame("No gene set found!"))
  }


  fold <- top_1[, 1]
  names(fold) <- rownames(top_1)

  # Use absolute value of fold change, disregard direction
  if (absolute_fold) {
    fold <- abs(fold)
  }

  paths <- fgsea::fgsea(
    pathways = gene_sets,
    stats = fold,
    minSize = my_range[1],
    maxSize = my_range[2],
    nPerm = nPerm,
    nproc = 6
  )

  if (dim(paths)[1] < 1) {
    return(no_sig)
  }
  paths <- as.data.frame(paths)
  # Sort by NES
  paths <- paths[order(-abs(paths[, 5])), ]
  top_1 <- paths[, c(1, 5, 7, 3)]
  colnames(top_1) <- c("Pathway", "NES", "Genes", "adj.Pval")

  if (length(which(top_1[, 4] <= pathway_p_val_cutoff)) == 0) {
    return(no_sig)
  }
  top_1 <- top_1[which(top_1[, 4] <= pathway_p_val_cutoff), , drop = FALSE]

  if (dim(top_1)[1] > n_pathway_show) {
    top_1 <- top_1[1:n_pathway_show, , drop = FALSE]
  }

  top_1 <- as.data.frame(top_1)
  top_1 <- cbind(rep(select_contrast, dim(top_1)[1]), top_1)
  top_1[, 4] <- as.character(round(as.numeric(top_1[, 4]), 4))
  top_1$adj.Pval <- sprintf("%-2.1e", as.numeric(top_1$adj.Pval))
  top_1[, 1] <- as.character(top_1[, 1])
  colnames(top_1)[1] <- "Direction"
  colnames(top_1)[2] <- paste("GSEA analysis:", gsub("-", " vs ", select_contrast))
  top_1[which(as.numeric(top_1[, 3]) > 0), 1] <- "Up"
  top_1[which(as.numeric(top_1[, 3]) < 0), 1] <- "Down"
  # sort by adj.Pval
  top_1 <- top_1[order(top_1[, 1], as.numeric(top_1$adj.Pval)), ]
  top_1[duplicated(top_1[, 1]), 1] <- ""
  top_1[, 3] <- as.character(round(as.numeric(top_1[, 3]), 4))

  return(top_1)
}

#' Pathway analysis with reactome package
#'
#' Run pathway analysis with the reactome package using the results
#' from the limma_value function.
#'
#' @param select_contrast String designating the comparison from DEG analysis to
#'  filter for the significant genes. See the 'comparison' element from the list
#'  returned from \code{\link{limma_value}()} for options.
#' @param my_range Vector of the (min_set_size, max_set_size)
#' @param limma Results list from the \code{\link{limma_value}()}
#' @param gene_p_val_cutoff Significant p-value to filter
#'  the top genes fold change by
#' @param converted Return value from the \code{\link{convert_id}()} function,
#'  contains information about the gene IDs for the matched species
#' @param idep_data List of data files from the database, returned from
#'  \code{\link{get_idep_data}()}
#' @param pathway_p_val_cutoff Significant p-value to determine
#'  enriched pathways
#' @param n_pathway_show Number of pathways to return in final
#'  result
#' @param absolute_fold TRUE/FALSE to use the absolute value of the fold
#'  change
#'
#' @export
#' @return A data frame with the results of the pathway analysis.
#'  The data frame has five columns for the direction of the
#'  regulation, the pathway description, the stat value, the
#'  number of overlapping genes, and the p-value.
#'
#' @family pathway functions
#'
reactome_data <- function(select_contrast,
                          my_range,
                          limma,
                          gene_p_val_cutoff,
                          converted,
                          idep_data,
                          pathway_p_val_cutoff,
                          n_pathway_show,
                          absolute_fold) {
  ensembl_species <- c(
    "hsapiens_gene_ensembl", "rnorvegicus_gene_ensembl", "mmusculus_gene_ensembl",
    "celegans_gene_ensembl", "scerevisiae_gene_ensembl", "drerio_gene_ensembl",
    "dmelanogaster_gene_ensembl"
  )
  reactome_pa_species <- c("human", "rat", "mouse", "celegans", "yeast", "zebrafish", "fly")
  no_sig <- as.data.frame("No significant pathway found.")
  if (length(limma$top_genes) == 0) {
    return(no_sig)
  }
  if (length(limma$comparisons) == 1) {
    top_1 <- limma$top_genes[[1]]
  } else {
    top <- limma$top_genes
    ix <- match(select_contrast, names(top))
    if (is.na(ix)) {
      return(no_sig)
    }
    top_1 <- top[[ix]]
  }
  if (dim(top_1)[1] == 0) {
    return(no_sig)
  }
  colnames(top_1) <- c("Fold", "FDR")

  # Remove some genes
  top_1 <- top_1[which(top_1$FDR < gene_p_val_cutoff), ]

  fold <- top_1[, 1]
  names(fold) <- rownames(top_1)
  if (absolute_fold) {
    # Use absolute value of fold change, disregard direction
    fold <- abs(fold)
  }

  species <- converted$species[1, 1]
  ix <- match(species, ensembl_species)

  if (is.na(ix)) {
    return(as.data.frame("Species not coverted by ReactomePA package!"))
  }

  fold <- convert_ensembl_to_entrez(
    query = fold,
    species = species,
    org_info = idep_data$org_info,
    idep_data = idep_data
  )


  fold <- sort(fold, decreasing = T)
  paths <- ReactomePA::gsePathway(
    fold,
    nPerm = 5000,
    organism = reactome_pa_species[ix],
    minGSSize = my_range[1],
    maxGSSize = my_range[2],
    pvalueCutoff = 0.5,
    pAdjustMethod = "BH",
    verbose = FALSE
  )

  paths <- as.data.frame(paths)

  if (is.null(paths)) {
    return(no_sig)
  }
  if (dim(paths)[1] == 0) {
    return(no_sig)
  }

  if (dim(paths)[1] < 1) {
    return(no_sig)
  }
  paths <- as.data.frame(paths)
  paths <- paths[order(-abs(paths[, 5])), ]

  top_1 <- paths[, c(2, 5, 3, 7)]

  colnames(top_1) <- c("Pathway", "NES", "Genes", "adj.Pval")

  if (length(which(top_1[, 4] <= pathway_p_val_cutoff)) == 0) {
    return(no_sig)
  }
  top_1 <- top_1[which(top_1[, 4] <= pathway_p_val_cutoff), , drop = FALSE]

  if (dim(top_1)[1] > n_pathway_show) {
    top_1 <- top_1[1:n_pathway_show, , drop = FALSE]
  }

  top_1 <- as.data.frame(top_1)
  top_1 <- cbind(rep(select_contrast, dim(top_1)[1]), top_1)
  top_1[, 4] <- as.character(round(as.numeric(top_1[, 4]), 4))
  top_1$adj.Pval <- sprintf("%-2.1e", as.numeric(top_1$adj.Pval))
  top_1[, 1] <- as.character(top_1[, 1])
  colnames(top_1)[1] <- "Direction"
  colnames(top_1)[2] <- paste(
    "ReactomePA analysis:",
    gsub("-", " vs ", select_contrast)
  )
  top_1[which(as.numeric(top_1[, 3]) > 0), 1] <- "Up"
  top_1[which(as.numeric(top_1[, 3]) < 0), 1] <- "Down"
  top_1 <- top_1[order(top_1[, 1], -abs(as.numeric(top_1[, 3]))), ]
  top_1[duplicated(top_1[, 1]), 1] <- ""
  top_1[, 3] <- as.character(round(as.numeric(top_1[, 3]), 4))

  return(top_1)
}

#' Pathway analysis with the PGSEA package on all samples
#'
#' Run pathway analysis with the PGSEA package using the results
#' from the \code{\link{limma_value}()} on all samples.
#'
#' @param go  String designating the section of the database to query for
#'   pathway analysis. See \code{\link{gmt_category}()} for choices.
#' @param my_range Vector of the (min_set_size, max_set_size)
#' @param data Matrix of gene data that has been through the
#'   \code{\link{pre_process}()}
#' @param select_contrast String designating the comparison from DEG analysis to
#'  filter for the significant genes. See the 'comparison' element from the list
#'  returned from \code{\link{limma_value}()} for options.
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database. See list returned from \code{\link{read_gene_sets}()}
#' @param pathway_p_val_cutoff Significant p-value to determine
#'  enriched pathways
#' @param n_pathway_show Number of pathways to return in final
#'  result
#' @param select_go pathway category.
#' @param show_pathway_id Whether to show pathway id for GO and KEGG pathways
#' @param plot_colors A vector of colors for activated/surpressed pathways
#' 
#' @export
#' @return A data frame with the results of the pathway analysis.
#'  The data frame has five columns for the direction of the
#'  regulation, the pathway description, the stat value, the
#'  number of overlapping genes, and the p-value.
#'
#' @family pathway functions
pgsea_plot_all <- function(go,
                           my_range,
                           data,
                           select_contrast,
                           gene_sets,
                           pathway_p_val_cutoff,
                           n_pathway_show,
                           select_go,
                           show_pathway_id,
                           margin = c(3, 1, 13, 38),
                           plot_colors = NULL) {
  if (length(gene_sets) == 0) {
    plot.new()
    text(0, 1, "No gene sets!")
  } else {
    subtype <- detect_groups(colnames(data))
    result <- pgsea_data(
      processed_data = data,
      gene_sets = gene_sets,
      my_range = my_range,
      pathway_p_val_cutoff = pathway_p_val_cutoff,
      n_pathway_show = n_pathway_show
    )

    if (is.null(result$pg_data)) {
      plot.new()
      text(0.5, 1, "No significant pathway found!")
    } else {

       # remove pathway ID if selected so
      if (!show_pathway_id) {
        row.names(result$pg_data) <- remove_pathway_id_second(
          strings = row.names(result$pg_data), 
          select_go = select_go
        )
      }
      
      if(is.null(plot_colors)){
        color_vec <- PGSEA::.rwb
      }
      else{
        color_vec_1 <- colorRampPalette(c(plot_colors[[1]][1],"white"))(25)
        color_vec_2 <- colorRampPalette(c("white",plot_colors[[1]][2]))(25)
        color_vec <- c(color_vec_1,color_vec_2)
      }

      PGSEA::smcPlot(
        result$pg_data,
        factor(subtype),
        scale = c(-max(result$pg_data), max(result$pg_data)),
        show.grid = T,
        margins = margin,
        col = color_vec,
        cex.lab = 0.5
      )
    }
  }
}

#' Data from PGSEA plot
#'
#' Get the data matrix that is plotted in the heatmap created by
#' the \code{\link{plot_pgsea}()}.
#'
#' @param my_range Vector of the (min_set_size, max_set_size)
#' @param data Matrix of gene data that has been through
#'  \code{\link{pre_process}()}
#' @param select_contrast String designating the comparison from DEG analysis to
#'  filter for the significant genes. See the 'comparison' element from the list
#'  returned from \code{\link{limma_value}()} for options.
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database. See list returned from \code{\link{read_gene_sets}()}
#' @param sample_info Matrix of experiment design information for grouping
#' @param select_factors_model The selected factors for the model
#'  expression
#' @param select_model_comprions String designating selected comparisons to
#'  analyze in the DEG analysis. See \code{\link{list_model_comparisons_ui}()}
#'  for options
#' @param pathway_p_val_cutoff Significant p-value to determine
#'  enriched pathways
#' @param n_pathway_show Number of pathways to return in final
#'  result
#'
#' @export
#' @return Data matrix with the rownames the descriptions of pathways
#'  and the matrix the returned expression calculation from the PGSEA
#'  package.
#'
#' @family pathway functions
get_pgsea_plot_data <- function(my_range,
                                data,
                                select_contrast,
                                gene_sets,
                                sample_info,
                                select_factors_model,
                                select_model_comprions,
                                pathway_p_val_cutoff,
                                n_pathway_show) {
  # Find sample related to the comparison
  iz <- match(detect_groups(colnames(data)), unlist(strsplit(select_contrast, "-")))
  iz <- which(!is.na(iz))

  if (!is.null(sample_info) & !is.null(select_factors_model) & length(select_model_comprions) > 0) {
    # Strings like: "groups: mutant vs. control"
    comparisons <- gsub(".*: ", "", select_model_comprions)
    comparisons <- gsub(" vs\\. ", "-", comparisons)
    # Corresponding factors
    factors_vector <- gsub(":.*", "", select_model_comprions)
    # Selected contrast lookes like: "mutant-control"
    ik <- match(select_contrast, comparisons)
    if (is.na(ik)) {
      iz <- 1:(dim(data)[2])
    } else {
      # Interaction term, use all samples
      # Corresponding factors
      selected_factor <- factors_vector[ik]
      iz <- match(sample_info[, selected_factor], unlist(strsplit(select_contrast, "-")))
      iz <- which(!is.na(iz))
    }
  }

  if (grepl("I:", select_contrast)) {
    # If it is factor design use all samples
    iz <- 1:(dim(data)[2])
  }
  if (is.na(iz)[1] | length(iz) <= 1) {
    iz <- 1:(dim(data)[2])
  }

  genes <- data
  genes <- genes[, iz]

  subtype <- detect_groups(colnames(genes))

  if (length(gene_sets) == 0) {
    return(as.data.frame("No significant pathway!"))
  } else {
    result <- pgsea_data(
      processed_data = genes,
      gene_sets = gene_sets,
      my_range = my_range,
      pathway_p_val_cutoff = pathway_p_val_cutoff,
      n_pathway_show = n_pathway_show
    )

    if (is.null(result$pg_data)) {
      return(as.data.frame("No significant pathway!"))
    } else {
      return(as.data.frame(result$pg_data))
    }
  }
}

#' Data from PGSEA plot all samples
#'
#' Get the data matrix that is plotted in the heatmap created by
#' the pgsea_plot_all function.
#'
#' @param data Matrix of gene data that has been through
#'  \code{\link{pre_process}()}
#' @param select_contrast String designating the comparison from DEG analysis to
#'  filter for the significant genes. See the 'comparison' element from the list
#'  returned from \code{\link{limma_value}()} for options.
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database. See list returned from \code{\link{read_gene_sets}()}
#' @param my_range Vector of the (min_set_size, max_set_size)
#' @param pathway_p_val_cutoff Significant p-value to determine
#'  enriched pathways
#' @param n_pathway_show Number of pathways to return in final
#'  result
#'
#' @export
#' @return Data matrix with the rownames the descriptions of pathways
#'  and the matrix the returned expression calculation from the PGSEA
#'  package.
#'
#' @family pathway functions
get_pgsea_plot_all_samples_data <- function(data,
                                            select_contrast,
                                            gene_sets,
                                            my_range,
                                            pathway_p_val_cutoff,
                                            n_pathway_show) {
  genes <- data
  subtype <- detect_groups(colnames(genes))

  if (length(gene_sets) == 0) {
    plot.new()
    text(0, 1, "No gene sets!")
  } else {
    result <- pgsea_data(
      processed_data = genes,
      gene_sets = gene_sets,
      my_range = my_range,
      pathway_p_val_cutoff = pathway_p_val_cutoff,
      n_pathway_show = n_pathway_show
    )

    if (is.null(result$pg_data)) {
      return(as.data.frame("No significant pathway!"))
    } else {
      return(as.data.frame(result$pg_data))
    }
  }
}

#' Get data from genes in selected pathway
#'
#' Return a data matrix that is a subset of the processed data and
#' only contains genes that are in the gene set of the desired
#' pathway.
#'
#' @param sig_pathways Description of the pathway for which to
#'  obtain the gene expression data
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database. See list returned from
#'  \code{\link{read_gene_sets}()}
#' @param contrast_samples Vector of sample columns that correspond to the
#'  selected comparison
#' @param data Matrix of gene data that has been through
#'  \code{\link{pre_process}()}
#' @param select_org String designating the organism being analyzed
#' @param all_gene_names Matrix of all the matched and converted
#'  gene IDs from \code{\link{get_all_gene_names}()}
#'
#' @export
#' @return Sub-data matrix from the processed data. Only contains
#'  genes from the selected pathway and samples that correspond to
#'  the comparison being analyzed.
#'
#' @family pathway functions
pathway_select_data <- function(sig_pathways,
                                gene_sets,
                                contrast_samples,
                                data,
                                select_org,
                                all_gene_names) {
  if (sig_pathways == "All") {
    return(NULL)
  }
  # Find the gene set
  ix <- which(names(gene_sets) == sig_pathways)
  if (length(ix) == 0) {
    return(NULL)
  }
  # Retrieve genes
  genes <- gene_sets[[ix]]

  # Find related samples
  iz <- contrast_samples
  x <- data[which(rownames(data) %in% genes), iz]
  return(x)
}

#' Create pathway table with gene sets
#'
#' Create a data frame of significant pathways and their analysis
#' values. Also add a column that contains the gene sets for the
#' pathway.
#'
#' @param pathway_method Integer indicating which pathway method to use. Should
#'  be one of 1 for "GAGE", 2 = "PGSEA", 3 for "GSEA (preranded fgsea)", 4
#'  for "PGSEA w/ all samples", and 5 for "ReactomePA".
#' @param gage_pathway_data Matrix returned from \code{\link{gage_data}()}
#' @param fgsea_pathway_data Matrix returned from \code{\link{fgsea_data}()}
#' @param pgsea_plot_data Matrix returned from
#'  \code{\link{get_pgsea_plot_data}()}
#' @param pgsea_plot_all_samples_data Matrix returned from
#'  \code{\link{get_pgsea_plot_all_samples_data}()}
#' @param go String designating the section of the database to query for
#'   pathway analysis. See \code{\link{gmt_category}()} for choices.
#' @param select_org String designating which organism is being analyzed
#' @param gene_info Matrix returned from \code{\link{gene_info}()} function, all
#'  gene info from the database query with the User gene IDs
#' @param gene_sets List of vectors with each vector being the
#'  set of genes that correspond to a particular pathway in
#'  the database \code{\link{read_gene_sets function}()}
#' @param show_pathway_id whether to show pathway id or remove it
#'
#' @export
#' @return A data frame with the pathway analysis statistics and
#'  the gene sets for each significantly enriched pathway.
#'
#' @family pathway functions
get_pathway_list_data <- function(pathway_method,
                                  gage_pathway_data,
                                  fgsea_pathway_data,
                                  pgsea_plot_data,
                                  pgsea_plot_all_samples_data,
                                  gsva_plot_data,
                                  go,
                                  select_org,
                                  gene_info,
                                  gene_sets,
                                  show_pathway_id) {
  pathways <- NULL
  if (pathway_method == 1) {
    if (!is.null(gage_pathway_data)) {
      if (dim(gage_pathway_data)[2] > 1) {
        pathways <- gage_pathway_data
        colnames(pathways)[2] <- "Pathways"
        colnames(pathways)[4] <- "nGenes"
      }
    }
  }
  if (pathway_method == 3) {
    if (!is.null(fgsea_pathway_data)) {
      if (dim(fgsea_pathway_data)[2] > 1) {
        pathways <- fgsea_pathway_data
        colnames(pathways)[2] <- "Pathways"
        colnames(pathways)[4] <- "nGenes"
      }
    }
  }
  if (pathway_method == 2) {
    if (!is.null(pgsea_plot_data)) {
      if (dim(pgsea_plot_data)[2] > 1) {
        pathways <- as.data.frame(pgsea_plot_data)
        pathways$Pathways <- substr(rownames(pathways), 10, nchar(rownames(pathways)))
        pathways$adj.Pval <- gsub(" .*", "", rownames(pathways))
        pathways$Direction <- "Diff"
      }
    }
  }
  if (pathway_method == 4) {
    if (!is.null(pgsea_plot_all_samples_data)) {
      if (dim(pgsea_plot_all_samples_data)[2] > 1) {
        pathways <- as.data.frame(pgsea_plot_all_samples_data)
        pathways$Pathways <- substr(rownames(pathways), 10, nchar(rownames(pathways)))
        pathways$adj.Pval <- gsub(" .*", "", rownames(pathways))
        pathways$Direction <- "Diff"
      }
    }
  }

  if (pathway_method >= 6 && pathway_method <= 8 ) {
    if (!is.null(gsva_plot_data)) {
      if (dim(gsva_plot_data)[2] > 1) {
        pathways <- as.data.frame(gsva_plot_data)
        pathways$Pathways <- substr(rownames(pathways), 10, nchar(rownames(pathways)))
        pathways$adj.Pval <- gsub(" .*", "", rownames(pathways))
        pathways$Direction <- "Diff"
      }
    }
  }

  if (is.null(pathways)) {
    return(NULL)
  }
  # if no gene set data, return pathway list
  if (is.null(gene_sets)) {
    return(pathways)
  }

  pathways$adj_p_val <- as.numeric(pathways$adj.Pval)
  pathways <- subset(pathways, select = -c(adj.Pval))
  pathways$adj_p_val <- as.character(pathways$adj_p_val)

  # Sometimes only one pathway is in the table
  if (nrow(pathways) > 1) {
    for (i in 2:nrow(pathways)) {
      if (nchar(pathways$Direction[i]) <= 1) {
        pathways$Direction[i] <- pathways$Direction[i - 1]
      }
    }
  }

  # Gene symbol matching symbols
  probe_to_gene <- NULL
  if (go != "ID not recognized!" & select_org != "NEW") {
    # If more than 50% genes has symbol
    if (sum(is.na(gene_info$symbol)) / dim(gene_info)[1] < .5) {
      probe_to_gene <- gene_info[, c("ensembl_gene_id", "symbol")]
      probe_to_gene$symbol <- gsub(" ", "", probe_to_gene$symbol)

      ix <- which(
        is.na(probe_to_gene$symbol) |
          nchar(probe_to_gene$symbol) < 2 |
          toupper(probe_to_gene$symbol) == "NA" |
          toupper(probe_to_gene$symbol) == "0"
      )
      # Use gene ID
      probe_to_gene[ix, 2] <- probe_to_gene[ix, 1]
    }
  }

  pathways$Genes <- vector(mode = "list", length = nrow(pathways))
  # looking up genes for each pathway
  for (i in 1:nrow(pathways)) {
    # Find the gene set
    ix <- which(names(gene_sets) == pathways$Pathways[i])
    if (length(ix) != 0) {
      # Retrieve genes
      if (length(ix) > 1) {
        genes <- gene_sets[[ix[[1]]]]
      } else {
        genes <- gene_sets[[ix]]
      }

      if (!is.null(probe_to_gene)) {
        iy <- match(genes, probe_to_gene[, 1])
        genes <- probe_to_gene[iy, 2]
      }
      pathways$Genes[[i]] <- c(genes)
    }
  }

    # remove pathway ID if selected so
  if (!show_pathway_id) {
    pathways$Pathways <- remove_pathway_id(
      strings = pathways$Pathways,
      select_go = go
    )
  }

  return(pathways)
}

#' Use KEGG to create a pathway diagram
#'
#' In the database, use the KEGG information to create an image
#' that is a diagram of the pathway that is being enriched.
#'
#' @param go String designating the section of the database to query for
#'   pathway analysis. See \code{\link{gmt_category}()} for choices.
#' @param gage_pathway_data Matrix returned from \code{\link{gage_data}()}
#' @param sig_pathways Description of the pathway for which to
#'  obtain the gene expression data
#' @param select_contrast String designating the comparison from DEG analysis to
#'  filter for the significant genes. See the 'comparison' element from the list
#'  returned from \code{\link{limma_value}()} for options.
#' @param limma Results list from \code{\link{limma_value}()}
#' @param converted Return value from the \code{\link{convert_id}()}, contains
#'  information about the gene IDs for the matched species
#' @param idep_data Read data files from \code{\link{get_idep_data}()}
#' @param select_org The organism that the gene data is for
#' @param low_color String designating color value for the low-ly expressed
#'  genes
#' @param high_color String designating color value for the high-ly expressed
#'  genes
#'
#' @export
#' @return Make an image and return the path to the image to be
#'  rendered in the server.
#'
#' @family pathway functions
kegg_pathway <- function(go,
                         gage_pathway_data,
                         sig_pathways,
                         select_contrast,
                         limma,
                         converted,
                         idep_data,
                         select_org,
                         low_color = "green",
                         high_color = "red") {
  # First generate a blank image. Otherwise return(NULL) gives us errors.
  out_file <- tempfile(fileext = ".png")
  png(out_file, width = 400, height = 300)

  frame()
  dev.off()
  blank <- list(
    src = out_file,
    contentType = "image/png",
    width = 400,
    height = 300,
    alt = "Not downloaded."
  )


  if (is.null(go) || go != "KEGG") {
    return(blank)
  }
  if (is.null(gage_pathway_data)) {
    return(blank)
  }
  if (is.null(sig_pathways)) {
    return(blank)
  }

  if (is.null(select_contrast)) {
    return(blank)
  }

  if (sig_pathways == "All") {
    return(blank)
  }

  if (length(limma$top_genes) == 0) {
    return(blank)
  }

  # These two functions are from the pathview package, modified to write to a designated folder: temp.
  mypathview <- function(gene.data = NULL,
                         cpd.data = NULL,
                         pathway.id,
                         species = "hsa",
                         kegg.dir = ".",
                         cpd.idtype = "kegg",
                         gene.idtype = "entrez",
                         gene.annotpkg = NULL,
                         min.nnodes = 3,
                         kegg.native = TRUE,
                         map.null = TRUE,
                         expand.node = FALSE,
                         split.group = FALSE,
                         map.symbol = TRUE,
                         map.cpdname = TRUE,
                         node.sum = "sum",
                         discrete = list(gene = FALSE, cpd = FALSE),
                         limit = list(gene = 1, cpd = 1),
                         bins = list(gene = 10, cpd = 10),
                         both.dirs = list(gene = T, cpd = T),
                         trans.fun = list(gene = NULL, cpd = NULL),
                         low = list(gene = low_color, cpd = "blue"),
                         mid = list(gene = "gray", cpd = "gray"),
                         high = list(gene = high_color, cpd = "yellow"),
                         na.col = "transparent",
                         ...) {
    dtypes <- !is.null(gene.data) + (!is.null(cpd.data))
    cond0 <- dtypes == 1 & is.numeric(limit) & length(limit) > 1
    if (cond0) {
      if (limit[1] != limit[2] & is.null(names(limit))) {
        limit <- list(gene = limit[1:2], cpd = limit[1:2])
      }
    }
    if (is.null(trans.fun)) {
      trans.fun <- list(gene = NULL, cpd = NULL)
    }
    arg.len2 <- c(
      "discrete", "limit", "bins", "both.dirs", "trans.fun",
      "low", "mid", "high"
    )
    for (arg in arg.len2) {
      obj1 <- eval(as.name(arg))
      if (length(obj1) == 1) {
        obj1 <- rep(obj1, 2)
      }
      if (length(obj1) > 2) {
        obj1 <- obj1[1:2]
      }
      obj1 <- as.list(obj1)
      ns <- names(obj1)
      if (length(ns) == 0 | !all(c("gene", "cpd") %in% ns)) {
        names(obj1) <- c("gene", "cpd")
      }
      assign(arg, obj1)
    }
    if (is.character(gene.data)) {
      gd.names <- gene.data
      gene.data <- rep(1, length(gene.data))
      names(gene.data) <- gd.names
      both.dirs$gene <- FALSE
      ng <- length(gene.data)
      nsamp.g <- 1
    } else if (!is.null(gene.data)) {
      if (length(dim(gene.data)) == 2) {
        gd.names <- rownames(gene.data)
        ng <- nrow(gene.data)
        nsamp.g <- 2
      } else if (is.numeric(gene.data) & is.null(dim(gene.data))) {
        gd.names <- names(gene.data)
        ng <- length(gene.data)
        nsamp.g <- 1
      } else {
        stop("wrong gene.data format!")
      }
    } else if (is.null(cpd.data)) {
      stop("gene.data and cpd.data are both NULL!")
    }
    gene.idtype <- toupper(gene.idtype)
    bods <- pathview::bods
    if (species != "ko") {
      species.data <- pathview::kegg.species.code(
        species,
        na.rm = T,
        code.only = FALSE
      )
    } else {
      species.data <- c(
        kegg.code = "ko",
        entrez.gnodes = "0",
        kegg.geneid = "K01488",
        ncbi.geneid = NA,
        ncbi.proteinid = NA,
        uniprot = NA
      )
      gene.idtype <- "KEGG"
      msg.fmt <- "Only KEGG ortholog gene ID is supported, make sure it looks like \"%s\"!"
      msg <- sprintf(msg.fmt, species.data["kegg.geneid"])
      message("Note: ", msg)
    }
    if (length(dim(species.data)) == 2) {
      message("Note: ", "More than two valide species!")
      species.data <- species.data[1, ]
    }
    species <- species.data["kegg.code"]
    entrez.gnodes <- species.data["entrez.gnodes"] == 1
    if (is.na(species.data["ncbi.geneid"])) {
      if (!is.na(species.data["kegg.geneid"])) {
        msg.fmt <- "Mapping via KEGG gene ID (not Entrez) is supported for this species,\nit looks like \"%s\"!"
        msg <- sprintf(msg.fmt, species.data["kegg.geneid"])
        message("Note: ", msg)
      } else {
        stop("This species is not annotated in KEGG!")
      }
    }
    if (is.null(gene.annotpkg)) {
      gene.annotpkg <- bods[match(species, bods[, 3]), 1]
    }
    if (
      length(grep("ENTREZ|KEGG|NCBIPROT|UNIPROT", gene.idtype)) < 1 & !is.null(gene.data)
    ) {
      if (is.na(gene.annotpkg)) {
        stop("No proper gene annotation package available!")
      }
      if (!gene.idtype %in% gene.idtype.bods[[species]]) {
        stop("Wrong input gene ID type!")
      }
      gene.idmap <- pathview::id2eg(
        gd.names,
        category = gene.idtype,
        pkg.name = gene.annotpkg,
        unique.map = F
      )
      gene.data <- pathview::mol.sum(gene.data, gene.idmap)
      gene.idtype <- "ENTREZ"
    }
    if (gene.idtype != "KEGG" & !entrez.gnodes & !is.null(gene.data)) {
      id.type <- gene.idtype
      if (id.type == "ENTREZ") {
        id.type <- "ENTREZID"
      }
      kid.map <- names(species.data)[-c(1:2)]
      kid.types <- names(kid.map) <- c(
        "KEGG", "ENTREZID", "NCBIPROT", "UNIPROT"
      )
      kid.map2 <- gsub("[.]", "-", kid.map)
      kid.map2["UNIPROT"] <- "up"
      if (is.na(kid.map[id.type])) {
        stop("Wrong input gene ID type for the species!")
      }
      message("Info: Getting gene ID data from KEGG...")
      gene.idmap <- KEGGREST::keggConv(kid.map2[id.type], species)
      message("Info: Done with data retrieval!")
      kegg.ids <- gsub(paste(species, ":", sep = ""), "", names(gene.idmap))
      in.ids <- gsub(paste0(kid.map2[id.type], ":"), "", gene.idmap)
      gene.idmap <- cbind(in.ids, kegg.ids)
      gene.data <- pathview::mol.sum(gene.data, gene.idmap)
      gene.idtype <- "KEGG"
    }
    if (is.character(cpd.data)) {
      cpdd.names <- cpd.data
      cpd.data <- rep(1, length(cpd.data))
      names(cpd.data) <- cpdd.names
      both.dirs$cpd <- FALSE
      ncpd <- length(cpd.data)
    } else if (!is.null(cpd.data)) {
      if (length(dim(cpd.data)) == 2) {
        cpdd.names <- rownames(cpd.data)
        ncpd <- nrow(cpd.data)
      } else if (is.numeric(cpd.data) & is.null(dim(cpd.data))) {
        cpdd.names <- names(cpd.data)
        ncpd <- length(cpd.data)
      } else {
        stop("wrong cpd.data format!")
      }
    }
    if (length(grep("kegg", cpd.idtype)) < 1 & !is.null(cpd.data)) {
      data(rn.list)
      cpd.types <- c(names(rn.list), "name")
      cpd.types <- tolower(cpd.types)
      cpd.types <- cpd.types[-grep("kegg", cpd.types)]
      if (!tolower(cpd.idtype) %in% cpd.types) {
        stop("Wrong input cpd ID type!")
      }
      cpd.idmap <- pathview::cpd2kegg(cpdd.names, in.type = cpd.idtype)
      cpd.data <- pathview::mol.sum(cpd.data, cpd.idmap)
    }
    warn.fmt <- "Parsing %s file failed, please check the file!"
    if (length(grep(species, pathway.id)) > 0) {
      pathway.name <- pathway.id
      pathway.id <- gsub(species, "", pathway.id)
    } else {
      pathway.name <- paste(species, pathway.id, sep = "")
    }
    kfiles <- list.files(path = kegg.dir, pattern = "[.]xml|[.]png")
    npath <- length(pathway.id)
    out.list <- list()
    tfiles.xml <- paste(pathway.name, "xml", sep = ".")
    tfiles.png <- paste(pathway.name, "png", sep = ".")
    if (kegg.native) {
      ttype <- c("xml", "png")
    } else {
      ttype <- "xml"
    }
    xml.file <- paste(kegg.dir, "/", tfiles.xml, sep = "")
    for (i in 1:npath) {
      if (kegg.native) {
        tfiles <- c(tfiles.xml[i], tfiles.png[i])
      } else {
        tfiles <- tfiles.xml[i]
      }
      if (!all(tfiles %in% kfiles)) {
        dstatus <- pathview::download.kegg(
          pathway.id = pathway.id[i],
          species = species,
          kegg.dir = kegg.dir,
          file.type = ttype
        )
        if (dstatus == "failed") {
          warn.fmt <- "Failed to download KEGG xml/png files, %s skipped!"
          warn.msg <- sprintf(warn.fmt, pathway.name[i])
          message("Warning: ", warn.msg)
          return(invisible(0))
        }
      }
      if (kegg.native) {
        node.data <- try(pathview::node.info(xml.file[i]), silent = T)
        if (class(node.data) == "try-error") {
          warn.msg <- sprintf(warn.fmt, xml.file[i])
          message("Warning: ", warn.msg)
          return(invisible(0))
        }
        node.type <- c("gene", "enzyme", "compound", "ortholog")
        sel.idx <- node.data$type %in% node.type
        nna.idx <- !is.na(
          node.data$x + node.data$y + node.data$width + node.data$height
        )
        sel.idx <- sel.idx & nna.idx
        if (sum(sel.idx) < min.nnodes) {
          warn.fmt <- "Number of mappable nodes is below %d, %s skipped!"
          warn.msg <- sprintf(warn.fmt, min.nnodes, pathway.name[i])
          message("Warning: ", warn.msg)
          return(invisible(0))
        }
        node.data <- lapply(node.data, "[", sel.idx)
      } else {
        gR1 <- try(
          pathview::parseKGML2Graph2(
            xml.file[i],
            genes = F,
            expand = expand.node,
            split.group = split.group
          ),
          silent = T
        )
        node.data <- try(
          pathview::node.info(gR1),
          silent = T
        )
        if (class(node.data) == "try-error") {
          warn.msg <- sprintf(warn.fmt, xml.file[i])
          message("Warning: ", warn.msg)
          return(invisible(0))
        }
      }
      if (species == "ko") {
        gene.node.type <- "ortholog"
      } else {
        gene.node.type <- "gene"
      }
      if ((
        !is.null(gene.data) | map.null) & sum(node.data$type == gene.node.type) > 1
      ) {
        plot.data.gene <- pathview::node.map(
          gene.data,
          node.data,
          node.types = gene.node.type,
          node.sum = node.sum,
          entrez.gnodes = entrez.gnodes
        )
        kng <- plot.data.gene$kegg.names
        kng.char <- gsub("[0-9]", "", unlist(kng))
        if (any(kng.char > "")) {
          entrez.gnodes <- FALSE
        }
        if (map.symbol & species != "ko" & entrez.gnodes) {
          if (is.na(gene.annotpkg)) {
            warn.fmt <- "No annotation package for the species %s, gene symbols not mapped!"
            warn.msg <- sprintf(warn.fmt, species)
            message("Warning: ", warn.msg)
          } else {
            # Try to fix this error: Error in $<-.data.frame: replacement has 97 rows, data has 103
            plot.data.gene$labels <- NA
            plot.data.gene$labels <- pathview::eg2id(
              as.character(plot.data.gene$kegg.names),
              category = "SYMBOL",
              pkg.name = gene.annotpkg
            )[, 2]
            mapped.gnodes <- rownames(plot.data.gene)
            node.data$labels[mapped.gnodes] <- plot.data.gene$labels
          }
        }
        cols.ts.gene <- pathview::node.color(
          plot.data.gene,
          limit$gene,
          bins$gene,
          both.dirs = both.dirs$gene,
          trans.fun = trans.fun$gene,
          discrete = discrete$gene,
          low = low$gene,
          mid = mid$gene,
          high = high$gene,
          na.col = na.col
        )
      } else {
        plot.data.gene <- cols.ts.gene <- NULL
      }
      if ((
        !is.null(cpd.data) | map.null) & sum(node.data$type == "compound") > 1
      ) {
        plot.data.cpd <- pathview::node.map(
          cpd.data,
          node.data,
          node.types = "compound",
          node.sum = node.sum
        )
        if (map.cpdname & !kegg.native) {
          plot.data.cpd$labels <- pathview::cpdkegg2name(plot.data.cpd$labels)[, 2]
          mapped.cnodes <- rownames(plot.data.cpd)
          node.data$labels[mapped.cnodes] <- plot.data.cpd$labels
        }
        cols.ts.cpd <- pathview::node.color(
          plot.data.cpd,
          limit$cpd,
          bins$cpd,
          both.dirs = both.dirs$cpd,
          trans.fun = trans.fun$cpd,
          discrete = discrete$cpd,
          low = low$cpd,
          mid = mid$cpd,
          high = high$cpd,
          na.col = na.col
        )
      } else {
        plot.data.cpd <- cols.ts.cpd <- NULL
      }
      if (kegg.native) {
        pv.pars <- my.keggview.native(
          plot.data.gene = plot.data.gene,
          cols.ts.gene = cols.ts.gene,
          plot.data.cpd = plot.data.cpd,
          cols.ts.cpd = cols.ts.cpd,
          node.data = node.data,
          pathway.name = pathway.name[i],
          kegg.dir = kegg.dir,
          limit = limit,
          bins = bins,
          both.dirs = both.dirs,
          discrete = discrete,
          low = low,
          mid = mid,
          high = high,
          na.col = na.col,
          ...
        )
      } else {
        pv.pars <- pathview::keggview.graph(
          plot.data.gene = plot.data.gene,
          cols.ts.gene = cols.ts.gene,
          plot.data.cpd = plot.data.cpd,
          cols.ts.cpd = cols.ts.cpd,
          node.data = node.data,
          path.graph = gR1,
          pathway.name = pathway.name[i],
          map.cpdname = map.cpdname,
          split.group = split.group,
          limit = limit,
          bins = bins,
          both.dirs = both.dirs,
          discrete = discrete,
          low = low,
          mid = mid,
          high = high,
          na.col = na.col,
          ...
        )
      }
      plot.data.gene <- cbind(plot.data.gene, cols.ts.gene)
      if (!is.null(plot.data.gene)) {
        cnames <- colnames(plot.data.gene)[-(1:8)]
        nsamp <- length(cnames) / 2
        if (nsamp > 1) {
          cnames[(nsamp + 1):(2 * nsamp)] <- paste(
            cnames[(nsamp + 1):(2 * nsamp)], "col",
            sep = "."
          )
        } else {
          cnames[2] <- "mol.col"
        }
        colnames(plot.data.gene)[-(1:8)] <- cnames
      }
      plot.data.cpd <- cbind(plot.data.cpd, cols.ts.cpd)
      if (!is.null(plot.data.cpd)) {
        cnames <- colnames(plot.data.cpd)[-(1:8)]
        nsamp <- length(cnames) / 2
        if (nsamp > 1) {
          cnames[(nsamp + 1):(2 * nsamp)] <- paste(
            cnames[(nsamp + 1):(2 * nsamp)], "col",
            sep = "."
          )
        } else {
          cnames[2] <- "mol.col"
        }
        colnames(plot.data.cpd)[-(1:8)] <- cnames
      }
      out.list[[i]] <- list(
        plot.data.gene = plot.data.gene,
        plot.data.cpd = plot.data.cpd
      )
    }
    if (npath == 1) {
      out.list <- out.list[[1]]
    } else {
      names(out.list) <- pathway.name
    }
    return(invisible(out.list))
  } # <environment: namespace:pathview>

  my.keggview.native <- function(plot.data.gene = NULL,
                                 plot.data.cpd = NULL,
                                 cols.ts.gene = NULL,
                                 cols.ts.cpd = NULL,
                                 node.data,
                                 pathway.name,
                                 out.suffix = "pathview",
                                 kegg.dir = ".",
                                 multi.state = TRUE,
                                 match.data = TRUE,
                                 same.layer = TRUE,
                                 res = 400,
                                 cex = 0.25,
                                 discrete = list(gene = FALSE, cpd = FALSE),
                                 limit = list(gene = 1, cpd = 1),
                                 bins = list(gene = 10, cpd = 10),
                                 both.dirs = list(gene = T, cpd = T),
                                 low = list(gene = "green", cpd = "blue"),
                                 mid = list(gene = "gray", cpd = "gray"),
                                 high = list(gene = "red", cpd = "yellow"),
                                 na.col = "transparent",
                                 new.signature = TRUE,
                                 plot.col.key = TRUE,
                                 key.align = "x",
                                 key.pos = "topright",
                                 ...) {
    img <- png::readPNG(
      paste(kegg.dir, "/", pathway.name, ".png", sep = "")
    )
    width <- ncol(img)
    height <- nrow(img)
    cols.ts.gene <- cbind(cols.ts.gene)
    cols.ts.cpd <- cbind(cols.ts.cpd)
    nc.gene <- max(ncol(cols.ts.gene), 0)
    nc.cpd <- max(ncol(cols.ts.cpd), 0)
    nplots <- max(nc.gene, nc.cpd)
    pn.suffix <- colnames(cols.ts.gene)
    if (length(pn.suffix) < nc.cpd) {
      pn.suffix <- colnames(cols.ts.cpd)
    }
    if (length(pn.suffix) < nplots) {
      pn.suffix <- 1:nplots
    }
    if (length(pn.suffix) == 1) {
      pn.suffix <- out.suffix
    } else {
      pn.suffix <- paste(out.suffix, pn.suffix, sep = ".")
    }
    na.col <- colorpanel2(1, low = na.col, high = na.col)
    if ((match.data | !multi.state) & nc.gene != nc.cpd) {
      if (nc.gene > nc.cpd & !is.null(cols.ts.cpd)) {
        na.mat <- matrix(na.col, ncol = nplots - nc.cpd, nrow = nrow(cols.ts.cpd))
        cols.ts.cpd <- cbind(cols.ts.cpd, na.mat)
      }
      if (nc.gene < nc.cpd & !is.null(cols.ts.gene)) {
        na.mat <- matrix(
          na.col,
          ncol = nplots - nc.gene,
          nrow = nrow(cols.ts.gene)
        )
        cols.ts.gene <- cbind(cols.ts.gene, na.mat)
      }
      nc.gene <- nc.cpd <- nplots
    }
    out.fmt <- "Working in directory %s"
    wdir <- getwd()
    out.msg <- sprintf(out.fmt, wdir)
    message("Info: ", out.msg)
    out.fmt <- "Writing image file %s"
    multi.state <- multi.state & nplots > 1
    if (multi.state) {
      nplots <- 1
      pn.suffix <- paste(out.suffix, "multi", sep = ".")
      if (nc.gene > 0) {
        cols.gene.plot <- cols.ts.gene
      }
      if (nc.cpd > 0) {
        cols.cpd.plot <- cols.ts.cpd
      }
    }
    for (np in 1:nplots) {
      img.file <- paste(
        kegg.dir,
        "/",
        pathway.name,
        ".",
        pn.suffix[np],
        ".png",
        sep = ""
      )
      out.msg <- sprintf(out.fmt, img.file)
      message("Info: ", out.msg)
      png(img.file, width = width, height = height, res = res)
      op <- par(mar = c(0, 0, 0, 0))
      plot(
        c(0, width),
        c(0, height),
        type = "n",
        xlab = "",
        ylab = "",
        xaxs = "i",
        yaxs = "i"
      )
      if (new.signature) {
        img[height - 4:25, 17:137, 1:3] <- 1
      }
      if (same.layer != T) {
        rasterImage(img, 0, 0, width, height, interpolate = F)
      }
      if (!is.null(cols.ts.gene) & nc.gene >= np) {
        if (!multi.state) {
          cols.gene.plot <- cols.ts.gene[, np]
        }
        if (same.layer != T) {
          render.kegg.node(
            plot.data.gene,
            cols.gene.plot,
            img,
            same.layer = same.layer,
            type = "gene",
            cex = cex
          )
        } else {

          # Manually set the width and height of gene boxes
          # This solve an error found in rendering some pathways
          # generated by GSVA. Do not understand why, how. 9/6/2023 xj
          plot.data.gene$width <- 46
          plot.data.gene$height <- 17
          img <- render.kegg.node(
            plot.data.gene,
            cols.gene.plot,
            img,
            same.layer = same.layer,
            type = "gene"
          )
        }
      }
      if (!is.null(cols.ts.cpd) & nc.cpd >= np) {
        if (!multi.state) {
          cols.cpd.plot <- cols.ts.cpd[, np]
        }
        if (same.layer != T) {
          render.kegg.node(
            plot.data.cpd,
            cols.cpd.plot,
            img,
            same.layer = same.layer,
            type = "compound",
            cex = cex
          )
        } else {
          img <- render.kegg.node(
            plot.data.cpd,
            cols.cpd.plot,
            img,
            same.layer = same.layer,
            type = "compound"
          )
        }
      }
      if (same.layer == T) {
        graphics::rasterImage(img, 0, 0, width, height, interpolate = F)
      }
      pv.pars <- list()
      pv.pars$gsizes <- c(width = width, height = height)
      pv.pars$nsizes <- c(46, 17)
      pv.pars$op <- op
      pv.pars$key.cex <- 2 * 72 / res
      pv.pars$key.lwd <- 1.2 * 72 / res
      pv.pars$sign.cex <- cex
      off.sets <- c(x = 0, y = 0)
      align <- "n"
      ucol.gene <- unique(as.vector(cols.ts.gene))
      na.col.gene <- ucol.gene %in% c(na.col, NA)
      if (plot.col.key & !is.null(cols.ts.gene) & !all(na.col.gene)) {
        off.sets <- pathview::col.key(
          limit = limit$gene,
          bins = bins$gene,
          both.dirs = both.dirs$gene,
          discrete = discrete$gene,
          graph.size = pv.pars$gsizes,
          node.size = pv.pars$nsizes,
          key.pos = key.pos,
          cex = pv.pars$key.cex,
          lwd = pv.pars$key.lwd,
          low = low$gene,
          mid = mid$gene,
          high = high$gene,
          align = "n"
        )
        align <- key.align
      }
      ucol.cpd <- unique(as.vector(cols.ts.cpd))
      na.col.cpd <- ucol.cpd %in% c(na.col, NA)
      if (plot.col.key & !is.null(cols.ts.cpd) & !all(na.col.cpd)) {
        off.sets <- pathview::col.key(
          limit = limit$cpd,
          bins = bins$cpd,
          both.dirs = both.dirs$cpd,
          discrete = discrete$cpd,
          graph.size = pv.pars$gsizes,
          node.size = pv.pars$nsizes,
          key.pos = key.pos,
          off.sets = off.sets,
          cex = pv.pars$key.cex,
          lwd = pv.pars$key.lwd,
          low = low$cpd,
          mid = mid$cpd,
          high = high$cpd,
          align = align
        )
      }
      if (new.signature) {
        pathview.stamp(x = 17, y = 20, on.kegg = T, cex = pv.pars$sign.cex)
      }
      par(pv.pars$op)
      dev.off()
    }
    return(invisible(pv.pars))
  }

  # Modify function in a package, change namespace
  # http://stackoverflow.com/questions/23279904/modifying-an-r-package-function-for-current-r-session-assigninnamespace-not-beh
  tmpfun <- get("keggview.native", envir = asNamespace("pathview"))
  environment(my.keggview.native) <- environment(tmpfun)
  # Don't know if this is really needed
  attributes(my.keggview.native) <- attributes(tmpfun)


  # Get fold change
  if (length(limma$comparisons) == 1) {
    top_1 <- limma$top_genes[[1]]
  } else {
    top <- limma$top_genes
    ix <- match(select_contrast, names(top))
    if (is.na(ix)) {
      return(blank)
    }
    top_1 <- top[[ix]]
  }
  if (dim(top_1)[1] == 0) {
    return(blank)
  }


  colnames(top_1) <- c("Fold", "FDR")
  species <- converted$species[1, 1]

  fold <- top_1[, 1]
  names(fold) <- rownames(top_1)
  fold <- convert_ensembl_to_entrez(
    query = fold,
    species = species,
    org_info = idep_data$org_info,
    idep_data = idep_data
  )


  kegg_species_id <- idep_data$kegg_species_id

  kegg_species <- as.character(
    kegg_species_id[which(kegg_species_id[, 1] == species), 3]
  )

  # look up KEGG species ID "hsa", "mmu"
  kegg_species <- as.character(
    idep_data$org_info$KEGG[which(idep_data$org_info$ensembl_dataset == species)]
  )

  if (nchar(kegg_species) <= 2) {
    return(blank)
  }

  # find pathway id
  # "Path:hsa04110 Cell cycle" --> "hsa04110"
  path_id <- gsub(" .*", "", sig_pathways)
  path_id <- gsub("Path:", "", path_id)
  
  if(0){
    path_id <- kegg_pathway_id(
      sig_pathways,
      species,
      "KEGG",
      select_org,
      idep_data$gmt_files,
      idep_data$org_info,
      idep_data
    )
  }

  # Kegg pathway id not found.
  if (is.null(path_id)) {
    return(blank)
  }
  if (nchar(path_id) < 3) {
    return(blank)
  }
  random_string <- gsub(".*file", "", tempfile())
  temp_folder <- tempdir()
  out_file <- paste(
    temp_folder,
    "/",
    path_id,
    ".",
    random_string,
    ".png",
    sep = ""
  )

  pv.out <- mypathview(
    gene.data = fold,
    pathway.id = path_id,
    kegg.dir = temp_folder,
    out.suffix = random_string,
    species = kegg_species,
    kegg.native = TRUE
  )

  # Return a list containing the filename
  list(
    src = out_file,
    contentType = "image/png",
    width = "100%",
    height = "100%",
    alt = "KEGG pathway image."
  )
}



#' Remove Pathway ID from pathway name 
#' Only for GO and KEGG pathways
#'
#' Path:hsa00270 Cysteine and methionine metabolism 
#'           --> Cysteine and methionine metabolism
#'
#' @param strings a vector of strings
#' @param select_go   GOBP, GOCC, GOMP or KEGG or something else
#'
#' @export
#' @return a vector of strings
#'
#' @family pathway functions
remove_pathway_id <- function(strings, select_go) {
    if (is.null(strings)) {
      return(NULL)
    } else {
      if (select_go %in% c("GOBP", "GOCC", "GOMF", "KEGG")) {
        strings <- sub(
          "^\\S+\\s",
          "",
          strings
        )
        strings <- proper(strings)
      }
      return(strings)
    }
}

#' Remove Pathway ID from pathway name in PGSEA
#' Only for GO and KEGG pathways
#'
#' 5.40e-05 Path:hsa04110 Cell cycle
#'     --> 5.40e-05 Cell cycle
#'
#' @param strings a vector of strings
#' @param select_go   GOBP, GOCC, GOMP or KEGG or something else
#'
#' @export
#' @return a vector of strings
#'
#' @family pathway functions
remove_pathway_id_second <- function(strings, select_go) {
    if (is.null(strings)) {
      return(NULL)
    } else {
      if (select_go %in% c("GOBP", "GOCC", "GOMF", "KEGG")) {
        FDRs <- gsub(" .*", "", strings)

        # remove FDR
        strings <- remove_pathway_id(
          strings = strings,
          select_go = select_go
        )

        # remove pathway ID
        strings <- remove_pathway_id(
          strings = strings,
          select_go = select_go
        )
        # add FDR back
        strings <- paste(FDRs, strings)
      }
      return(strings)
    }
}
espors/idepGolem documentation built on Oct. 27, 2024, 4:56 a.m.