Description Usage Arguments Value Examples
View source: R/6.4_ISS_ClustMarker.R
Find Cluster marker of ISS data and plot significant gene cluster by barplot and heatmap.
1 2 | ISS_clustMarker(data, topgene = 5, test.use = "bimod",
marker.sig = 0.005, only.pos = TRUE, main = "")
|
data |
Input data in class MolDiaISS. Output of readISS. |
topgene |
Desired number of top gene ineach cluster to show in summary result. |
test.use |
Denotes which test to use. Seurat currently implements "bimod" (likelihood-ratio test for single cell gene expression, McDavid et al., Bioinformatics, 2013, default), "roc" (standard AUC classifier), "t" (Students t-test), and "tobit" (Tobit-test for differential gene expression, as in Trapnell et al., Nature Biotech, 2014). For details see FindAllMarkers |
marker.sig |
Lower value will identify less significant marker. Default is 0.005 |
only.pos |
Only return positive markers (TRUE by default) |
main |
Title of the plot. |
A list of cluster with putative ranked markers and associated statistics in slot cluster.marker of main data. Also clusterwise figure in barplot and heatmap of desired top genes.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ## Reading data
left_hypo <- readISS(file = system.file("extdata", "Hypocampus_left.csv", package="MolDia"),
cellid = "CellId", centX = "centroid_x", centY = "centroid_y")
## Arrange marker gene
data(marker_gene)
mark_gene <- list(genr = marker_gene$genr, neuron = c(marker_gene$genr_neuro,
marker_gene$genr_neuro_pyra1,
marker_gene$genr_neuro_pyra2,
marker_gene$genr_neuro_inter1,
marker_gene$genr_neuro_inter2,
marker_gene$genr_neuro_inter3,
marker_gene$genr_neuro_inter4,
marker_gene$genr_neuro_inter5,
marker_gene$genr_neuro_inter6),
nonneuron = marker_gene$genr_nonneuro)
## Barplot of Neuronal marker gene and extract those cells only
neuron_group <- ISS_barplot(data = left_hypo, gene = mark_gene, gene.target = 2,
at.least.gene = 2, gene.show = 2)
## Data preprocessing
neuron_group <- ISS_preprocess(data = neuron_group, normalization.method = "LogNormalize",
do.scale = TRUE, do.center = TRUE)
## Cluster data based on SEURAT pipeline
neuron_group_clust <- ISS_cluster (data = neuron_group, method = "seurat",
pc = 0.9, resolution = 0.1)
## Get cluster marker
neuron_group_clust_marker <- ISS_clustMarker(data = neuron_group_clust, topgene =5,
test.use="bimod", main = "")
## Plot cluster
ISS_map (data=neuron_group_clust_marker, what = "cluster", label.topgene = 4)
## Plot tSNE
neuron_group_clust_marker <- ISS_tsne(data = neuron_group_clust_marker, pc = 0.7)
ISS_map (data=neuron_group_clust_marker, what = "tsneAll", label.topgene = 4)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.