ISS_clustMarker: Find Cluster marker of ISS data.

Description Usage Arguments Value Examples

View source: R/6.4_ISS_ClustMarker.R

Description

Find Cluster marker of ISS data and plot significant gene cluster by barplot and heatmap.

Usage

1
2
ISS_clustMarker(data, topgene = 5, test.use = "bimod",
  marker.sig = 0.005, only.pos = TRUE, main = "")

Arguments

data

Input data in class MolDiaISS. Output of readISS.

topgene

Desired number of top gene ineach cluster to show in summary result.

test.use

Denotes which test to use. Seurat currently implements "bimod" (likelihood-ratio test for single cell gene expression, McDavid et al., Bioinformatics, 2013, default), "roc" (standard AUC classifier), "t" (Students t-test), and "tobit" (Tobit-test for differential gene expression, as in Trapnell et al., Nature Biotech, 2014). For details see FindAllMarkers

marker.sig

Lower value will identify less significant marker. Default is 0.005

only.pos

Only return positive markers (TRUE by default)

main

Title of the plot.

Value

A list of cluster with putative ranked markers and associated statistics in slot cluster.marker of main data. Also clusterwise figure in barplot and heatmap of desired top genes.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
## Reading data
left_hypo <- readISS(file = system.file("extdata", "Hypocampus_left.csv", package="MolDia"),
                     cellid = "CellId", centX = "centroid_x", centY = "centroid_y")

## Arrange marker gene
data(marker_gene)
mark_gene <- list(genr = marker_gene$genr, neuron = c(marker_gene$genr_neuro,
                                                      marker_gene$genr_neuro_pyra1,
                                                      marker_gene$genr_neuro_pyra2,
                                                      marker_gene$genr_neuro_inter1,
                                                      marker_gene$genr_neuro_inter2,
                                                      marker_gene$genr_neuro_inter3,
                                                      marker_gene$genr_neuro_inter4,
                                                      marker_gene$genr_neuro_inter5,
                                                      marker_gene$genr_neuro_inter6),
                                            nonneuron = marker_gene$genr_nonneuro)

## Barplot of Neuronal marker gene and extract those cells only
neuron_group <- ISS_barplot(data = left_hypo, gene = mark_gene, gene.target = 2,
                            at.least.gene = 2, gene.show = 2)
## Data preprocessing
neuron_group <- ISS_preprocess(data = neuron_group, normalization.method = "LogNormalize",
                               do.scale = TRUE, do.center = TRUE)

## Cluster data based on SEURAT pipeline
neuron_group_clust  <- ISS_cluster (data = neuron_group, method = "seurat",
                                    pc = 0.9, resolution = 0.1)
## Get cluster marker
neuron_group_clust_marker <- ISS_clustMarker(data = neuron_group_clust, topgene =5,
                                        test.use="bimod", main = "")
 
## Plot cluster                                                                              
ISS_map (data=neuron_group_clust_marker, what = "cluster", label.topgene = 4)

## Plot tSNE 
neuron_group_clust_marker <- ISS_tsne(data = neuron_group_clust_marker, pc = 0.7)
ISS_map (data=neuron_group_clust_marker, what = "tsneAll", label.topgene = 4)

mashranga/MolDia documentation built on May 26, 2019, 9:36 a.m.