Description Usage Arguments Examples
View source: R/6.2.1_ISS_cluster_seruat.R
"ISS_cluster_seruat" Cluster ISS data by SEURAT.
1 2 3 | ISS_cluster_seruat(data, pc = NULL, cluster_id = NULL,
resolution = 0.3, algorithm = 1, DEGmethod = "seurat",
k.param = 30)
|
data |
Input data in class MolDiaISS. Output of readISS. |
pc |
Desired percent of variance (0 to 1) to be explained by PCA. Default in NULL (All PC will use). |
cluster_id |
Re-cluster clustreded data. Numeric input. Default is NULL. |
resolution |
Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities. Default is 0.3. |
algorithm |
Algorithm for modularity optimization (1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm). Default is 1. |
DEGmethod |
Methods to find DE genes. |
k.param |
Defines k for the k-nearest neighbor algorithm |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | ## Reading data
data_3 <- readISS(file = system.file("extdata", "Hypocampus_left.csv", package="MolDia"),
cellid = "CellId", centX = "centroid_x", centY = "centroid_y")
## Arrange marker gene
data(marker_gene)
mark_gene <- list(genr = marker_gene$genr, neuron = c(marker_gene$genr_neuro,
marker_gene$genr_neuro_pyra1,
marker_gene$genr_neuro_pyra2,
marker_gene$genr_neuro_inter1,
marker_gene$genr_neuro_inter2,
marker_gene$genr_neuro_inter3,
marker_gene$genr_neuro_inter4,
marker_gene$genr_neuro_inter5,
marker_gene$genr_neuro_inter6),
nonneuron = marker_gene$genr_nonneuro)
## Barplot of Neuronal marker gene and extract those cells only
neuron_group <- ISS_barplot(data = data_3, gene = mark_gene, gene.target = 2,
at.least.gene = 8, gene.show = 2)
## Data preprocessing
neuron_group <- ISS_preprocess(data = neuron_group, normalization.method = "LogNormalize",
do.scale = TRUE, do.center = TRUE)
## Cluster data based on SEURAT pipeline
neuron_group_clust <- ISS_cluster_seruat (data = neuron_group, pc = 0.9, resolution = 0.4)
## Re-cluster specific cluster
# re_clust <- ISS_cluster_seruat (data = neuron_group_clust, pc = 0.9,
# cluster_id = 0, resolution = 0.5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.