Description Usage Arguments Examples
View source: R/7.2_ISS_ratiocor.R
Calculate and plot correlation and ratio of total reads between genes or group of genes.
1 2 3 | ISS_ratiocor(data, gene = marker_gene, select_gene = NULL,
errorbar = TRUE, plty = "both", logratio = TRUE,
sig.level = 0.05, main = "", stat = "sum")
|
data |
Data in list of groups with group name. Individual data is in class MolDiaISS. Output of readISS |
gene |
Gene names to be consider. Object in vector or list class. In list formated input, every list element is a group of interested genes. Every list element should have a name. |
select_gene |
Select gene of interest, Default is NULL i.e. all genes in gene list. |
errorbar |
Show error bar or not. Default is TRUE |
plty |
Show plot type. Available balue is "corr", "ratio" and "both". Default is "both". |
logratio |
Taking log2 of the ratio of gene's total reads count. |
sig.level |
confidence level for the returned confidence interval. Currently only used for the Pearson product moment correlation coefficient if there are at least 4 complete pairs of observations. |
main |
Title of the plot |
stat |
Mode of operation. Possible value is "sum", "gene" and "present". Default is "sum". |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ## Read data: Left and right HC
hcleft <- readISS(file = system.file("extdata", "Hypocampus_left.csv", package="MolDia"),
cellid = "CellId",centX = "centroid_x", centY = "centroid_y")
hcright <- readISS(file = system.file("extdata", "Hypocampus_right.csv", package="MolDia"),
cellid = "CellId",centX = "centroid_x", centY = "centroid_y")
## Arrange marker gene
data(marker_gene)
marker_gene <- marker_gene
mark_gene <- list(genr = marker_gene$genr, neuron = c(marker_gene$genr_neuro,
marker_gene$genr_neuro_pyra1,
marker_gene$genr_neuro_pyra2,
marker_gene$genr_neuro_inter1,
marker_gene$genr_neuro_inter2,
marker_gene$genr_neuro_inter3,
marker_gene$genr_neuro_inter4,
marker_gene$genr_neuro_inter5,
marker_gene$genr_neuro_inter6),
nonneuron = marker_gene$genr_nonneuro)
res <- ISS_ratiocor(data = list(Left_HC = c(hcleft),Right_HC = c(hcright)), gene = mark_gene, plty = "ratio")
res <- ISS_ratiocor(data = list(Left_HC = c(hcleft),Right_HC = c(hcright)), gene = mark_gene)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.