Description Usage Arguments Examples
Principle component analysis on any data in class MolDiaISS.
1 |
data |
Input data in class MolDiaISS. Output of readISS. |
pc |
Desired percent of variance to be explained by PCA. Default is 1 which means 100 percent variation explained. |
DEGmethod |
Methods for finding differentially expressed (DE) genes. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ## Reading data
left_hypo <- readISS(file = system.file("extdata", "Hypocampus_left.csv", package="MolDia"),
cellid = "CellId", centX = "centroid_x", centY = "centroid_y")
## Arrange marker gene
data(marker_gene)
mark_gene <- list(genr = marker_gene$genr, neuron = c(marker_gene$genr_neuro,
marker_gene$genr_neuro_pyra1,
marker_gene$genr_neuro_pyra2,
marker_gene$genr_neuro_inter1,
marker_gene$genr_neuro_inter2,
marker_gene$genr_neuro_inter3,
marker_gene$genr_neuro_inter4,
marker_gene$genr_neuro_inter5,
marker_gene$genr_neuro_inter6),
nonneuron = marker_gene$genr_nonneuro)
## Barplot of Neuronal marker gene and extract those cells only
neuron_group <- ISS_barplot(data = left_hypo, gene = mark_gene, gene.target = 2,
at.least.gene = 2, gene.show = 2)
## Preprocess data
neuron_group <- ISS_preprocess(data = neuron_group, normalization.method = "LogNormalize",
do.scale = TRUE, do.center = TRUE)
## Apply principle component analysis
res <- ISS_pca(data = neuron_group, pc = 0.9)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.