#### Helper Functions for EvoWeaver class ####
# author: Aidan Lakshman
# contact: ahl27@pitt.edu
#
#### S3 Generic Definitions ####
PAProfiles <- function(ew, ...) UseMethod('PAProfiles')
CophProfiles <- function(ew, ...) UseMethod('CophProfiles')
RandCophProfiles <- function(ew, ...) UseMethod('RandCophProfiles')
################################
NormArgProcessors <- function(Processors){
# Normalize argument so it always works
coresAvailable <- detectCores()
if(is(Processors, 'numeric')){
Processors <- as.integer(Processors)
}
if(!is(Processors, 'integer')){
Processors <- 1L
}
if(is.null(Processors)){
Processors <- coresAvailable
}
Processors <- max(1L, Processors)
Processors <- min(Processors, coresAvailable)
Processors
}
BuildSimMatInternal <- function(vecs, uvals, evalmap, l, n, FXN, ARGS, Verbose,
CombinePVal=TRUE, CORRECTION=NULL, InputIsList=FALSE){
pairscores <- rep(ifelse(CombinePVal, NA_real_, NA_complex_), l*(l-1)/2)
ctr <- 0
if (Verbose) pb <- txtProgressBar(max=(l*(l-1) / 2), style=3)
for ( i in seq_len(l-1) ){
uval1 <- uvals[i]
if (InputIsList){
v1 <- vecs[[i]]
} else {
v1 <- vecs[,i]
}
for ( j in (i+1):l ){
uval2 <- uvals[j]
accessor <- as.character(min(uval1, uval2))
entry <- max(uval1, uval2)
if (is.null(evalmap) || entry %in% evalmap[[accessor]]){
if (InputIsList){
v2 <- vecs[[j]]
} else {
v2 <- vecs[,j]
}
pairscores[ctr+1] <- FXN(v1, v2, ARGS, i, j)
}
ctr <- ctr + 1
if (Verbose) setTxtProgressBar(pb, ctr)
}
}
if (Verbose) cat('\n')
n <- n[uvals]
if (!is.null(CORRECTION)){
pairscores <- CORRECTION(pairscores)
}
pairscores <- as.simMat(pairscores, NAMES=n, DIAG=FALSE)
return(pairscores)
}
PAProfiles.EvoWeaver <- function(ew, toEval=NULL, Verbose=TRUE,
speciesList=NULL, ...){
cols <- names(ew)
ao <- attr(ew, 'allOrgs')
if (!is.null(speciesList)){
stopifnot('Species list is missing species!'=all(ao %in% speciesList))
allOrgs <- speciesList
} else {
allOrgs <- ao
}
useColoc <- attr(ew, 'useColoc')
useMT <- attr(ew, 'useMT')
if (useMT)
ew <- lapply(ew, labels)
if (useColoc)
ew <- lapply(ew, gsub, pattern='([^_]*)_.*', replacement='\\1')
skip <- FALSE
if ( !is.null(toEval) ){
skip <- TRUE
locs <- unique(c(toEval))
}
profiles <- matrix(FALSE, nrow=length(allOrgs), ncol=length(ew))
rownames(profiles) <- allOrgs
colnames(profiles) <- cols
if (Verbose) pb <- txtProgressBar(max=length(ew), style=3)
for ( i in seq_len(length(ew)) ){
if( !skip || i %in% locs)
profiles[ew[[i]],i] <- TRUE
if (Verbose) setTxtProgressBar(pb, i)
}
if (Verbose) cat('\n')
if (!is.null(toEval))
profiles <- profiles[,locs]
return(profiles)
}
CophProfiles.EvoWeaver <- function(ew, toEval=NULL, Verbose=TRUE,
speciesList=NULL, ...){
## TODO: Some way to handle paralogs
cols <- names(ew)
ao <- attr(ew, 'allOrgs')
if (!is.null(speciesList)){
stopifnot('Species list is missing species!'=all(ao %in% speciesList))
allOrgs <- speciesList
} else {
allOrgs <- ao
}
useColoc <- attr(ew, 'useColoc')
useMT <- attr(ew, 'useMT')
stopifnot('EvoWeaver object must be initialized with dendrograms to run MirrorTree methods'=
useMT)
skip <- FALSE
if ( !is.null(toEval) ){
skip <- TRUE
locs <- unique(c(toEval))
}
l <- length(allOrgs)
num_entries <- (l * (l-1)) / 2
outmat <- matrix(0, nrow=num_entries, ncol=length(ew))
dummycoph <- matrix(NA, nrow=l, ncol=l)
ut <- upper.tri(dummycoph)
rownames(dummycoph) <- colnames(dummycoph) <- allOrgs
if (Verbose) pb <- txtProgressBar(max=length(ew), style=3)
for ( i in seq_along(ew) ){
if ( !skip || i %in% locs ){
dummycoph[] <- NA
cop <- NA
# This is occasionally throwing errors that don't affect output for some reason
cop <- as.matrix(Cophenetic(ew[[i]]))
copOrgNames <- rownames(cop)
if (useColoc){
copOrgNames <- vapply(copOrgNames, gsub, pattern='(.+)_.+_[0-9]+',
replacement='\\1', FUN.VALUE=character(1))
rownames(cop) <- colnames(cop) <- copOrgNames
}
dummycoph[copOrgNames, copOrgNames] <- cop
outmat[,i] <- dummycoph[ut]
}
if (Verbose) setTxtProgressBar(pb, i)
}
if(Verbose) cat('\n')
colnames(outmat) <- cols
if (!is.null(toEval)){
outmat <- outmat[,locs]
#ltr <- vapply(seq_len(nrow(outmat)), function(x) all(is.na(outmat[x,])),
# FUN.VALUE=logical(1))
#outmat <- outmat[!ltr,]
}
return(outmat)
}
RandCophProfiles.EvoWeaver <- function(ew, toEval=NULL, Verbose=TRUE,
speciesList=NULL, outdim=-1,
speciesCorrect=FALSE, mySpeciesTree=NULL,
Processors=1L, ...){
## TODO: Some way to handle paralogs
cols <- names(ew)
ao <- attr(ew, 'allOrgs')
if (!is.null(speciesList)){
stopifnot('Species list is missing species!'=all(ao %in% speciesList))
allOrgs <- speciesList
} else {
allOrgs <- ao
}
Processors <- NormArgProcessors(Processors)
useColoc <- attr(ew, 'useColoc')
useMT <- attr(ew, 'useMT')
stopifnot('EvoWeaver object must be initialized with dendrograms to run MirrorTree methods'=
useMT)
skip <- FALSE
if ( !is.null(toEval) ){
skip <- TRUE
locs <- unique(c(toEval))
}
l <- length(allOrgs)
outdim <- ifelse(outdim < 1, l, outdim)
outdim <- as.integer(outdim)
outmat <- matrix(0, nrow=outdim, ncol=length(ew))
#dummycoph <- matrix(NA, nrow=l, ncol=l)
#ut <- upper.tri(dummycoph, diag=FALSE)
dummycoph <- rep(0, l*(l-1)/2)
class(dummycoph) <- 'dist'
attr(dummycoph, "Size") <- l
attr(dummycoph, "Diag") <- TRUE
attr(dummycoph, "Upper") <- TRUE
attr(dummycoph, "Labels") <- allOrgs
if (speciesCorrect && !is.null(mySpeciesTree)){
specd <- as.vector(fastCoph(mySpeciesTree))
#specd[specd==0] <- 1
spv2 <- specd
spv2[spv2==0] <- 1
#nonzeros <- which(specvec != 0)
#specvec <- .Call("randomProjection", specvec, nonzeros, length(nonzeros), outdim)
}
#rownames(dummycoph) <- colnames(dummycoph) <- allOrgs
if (Verbose) pb <- txtProgressBar(max=length(ew), style=3)
for ( i in seq_along(ew) ){
if ( !skip || i %in% locs ){
dummycoph[] <- 0
cop <- 0
# This is occasionally throwing errors that don't affect output for some reason
#cop <- as.matrix(Cophenetic(ew[[i]]))
if((!is.null(attr(ew[[i]], 'leaf')) && attr(ew[[i]],'leaf')) || attr(ew[[i]], 'members') <= 1L){
# edge case where we only have a single leaf in the tree
copvec <- dummycoph
} else {
cop <- fastCoph(ew[[i]])
#copOrgNames <- rownames(cop)
copOrgNames <- attr(cop, 'Labels')
if (useColoc){
copOrgNames <- vapply(copOrgNames, gsub, pattern='([^_]*)_.*',
replacement='\\1', FUN.VALUE=character(1))
#rownames(cop) <- colnames(cop) <- copOrgNames
attr(cop, 'Labels') <- copOrgNames
}
#dummycoph[copOrgNames, copOrgNames] <- cop
#copvec <- dummycoph[ut]
copvec <- combineDist(dummycoph, cop)
pos <- which(copvec != 0)
if (speciesCorrect){
copvec[pos] <- (copvec[pos] - specd[pos]) / spv2[pos]
}
}
copvec <- .Call("randomProjection", copvec,
pos, length(pos), outdim,
Processors, PACKAGE="SynExtend")
copvec[copvec==0] <- NA
outmat[,i] <- copvec
}
if (Verbose) setTxtProgressBar(pb, i)
}
if(Verbose) cat('\n')
colnames(outmat) <- cols
if (!is.null(toEval)){
outmat <- outmat[,locs]
#ltr <- vapply(seq_len(nrow(outmat)), function(x) all(is.na(outmat[x,])),
# FUN.VALUE=logical(1))
#outmat <- outmat[!ltr,]
}
return(outmat)
}
ProcessSubset <- function(ew, Subset=NULL){
pl <- length(ew)
evalmap <- NULL
uvals <- seq_len(pl)
if (!is.null(Subset)){
if (is(Subset, 'data.frame')){
Subset <- as.matrix(Subset)
}
n <- names(ew)
stopifnot("'Subset' must be either character, numeric, or matrix"=
(is(Subset, 'character') || is(Subset, 'numeric') || is(Subset, 'matrix')))
if (is(Subset, 'matrix')){
if( ncol(Subset) != 2)
stop('If Subset is a matrix, it must have 2 columns')
if( is(Subset[1], 'character') ){
Subset <- matrix(vapply(c(Subset), function(x) {
val <- which(x==n)
val <- ifelse(length(val) == 0, -1, val[1])
}, 0), ncol=2)
excise <- (Subset[,1] < 0) | (Subset[,2] < 0)
if (sum(excise) > 0)
Subset <- Subset[!excise,]
}
for ( i in seq_len(nrow(Subset))){
pos <- Subset[i,]
i1 <- as.character(min(pos))
i2 <- max(pos)
evalmap[[i1]] <- c(evalmap[[i1]], i2)
}
uvals <- unique(c(Subset))
} else {
if (is(Subset, 'character'))
Subset <- which(vapply(uvals, function(x) x == n, FUN.VALUE=logical(1)))
if (length(Subset)==1){
entry <- Subset[1]
if (entry > 1){
evalmap <- lapply(seq_len(entry-1), \(x) entry)
} else {
evalmap <- list()
}
if (entry < length(n)){
evalmap[[entry]] <- seq(entry+1, length(n))
}
names(evalmap) <- as.character(seq(1, entry))
uvals <- seq_along(n)
} else {
uvals <- unique(Subset)
evalmap <- lapply(uvals, function(x) uvals)
names(evalmap) <- as.character(uvals)
}
}
}
return(list(evalmap=evalmap, uvals=uvals))
}
flatdendrapply <- function(dend, NODEFUN=NULL, LEAFFUN=NODEFUN,
INCLUDEROOT=TRUE, ...){
stopifnot("flatdendrapply only works on objects of class 'dendrogram'"=
is(dend, 'dendrogram'))
if (!is(NODEFUN, 'function') && !is(LEAFFUN, 'function'))
stop("At least one of NODEFUN and LEAFFUN must be a function!")
val <- lapply(dend,
\(x){
if (is.null(attr(x, 'leaf'))){
if (!is(NODEFUN, 'function'))
v <- list()
else
v <- list(NODEFUN(x, ...))
for ( child in x ) v <- c(v, Recall(child))
return(v)
}
else if (!is(LEAFFUN, 'function'))
return(list())
else
return(list(LEAFFUN(x, ...)))
}
)
retval <- unlist(val, recursive=FALSE)
if (!INCLUDEROOT)
retval[[1]] <- NULL
lens <- vapply(retval, length, FUN.VALUE=0L)
atom <- vapply(retval, is.atomic, FUN.VALUE=TRUE)
if(all(lens == 1L) && all(atom))
retval <- unlist(retval)
return(retval)
}
recursive_parentdendrapply <- function(dend, f){
# f must have two arguments
stopifnot("function must have two arguments"=length(formals(f)) == 2)
return(.Call("rpdendrapply", dend, f, new.env(), PACKAGE="SynExtend"))
}
find_dend_distances <- function(dend, useColoc=FALSE){
if(useColoc){
dend <- rapply(dend, \(x){
attr(x, 'label') <- gsub("([^_]*)_.*", '\\1',attr(x, 'label'))
return(x)
}, how='replace')
}
leafh <- rapply(dend, \(x) c(attr(x, 'label'), attr(x, 'height')))
leafheights <- as.numeric(leafh[seq(2, length(leafh)+1, 2)])
names(leafheights) <- leafh[seq(1, length(leafh), 2)]
roothvec <- rep(attr(dend, 'height'), length(leafheights))
roothvec <- roothvec - leafheights
names(roothvec) <- names(leafheights)
roothvec <- roothvec[order(unlist(dend))]
attr(dend, 'distances') <- roothvec
attr(dend, 'branchlen') <- 0
finddistvec <- function(node, parent){
curv <- attr(parent, 'distances')
branchlen <- attr(parent, 'height') - attr(node, 'height')
pbranchlen <- attr(parent, 'branchlen')
curv <- curv + 0.5*(branchlen+pbranchlen)
if (is.null(attr(node, 'leaf'))){
children <- unlist(node)
} else {
children <- attr(node, 'label')
}
curv[children] <- curv[children] - branchlen - pbranchlen
attr(node, 'distances') <- curv
attr(node, 'branchlen') <- branchlen
return(node)
}
dend <- recursive_parentdendrapply(dend, finddistvec)
return(dend)
}
AdjMatToDf <- function(preds, Verbose=TRUE, Subset=NULL, CombinePVal=TRUE){
stopifnot(length(preds) > 0)
n <- names(preds)
prednames <- names(preds[[1]])
lp <- length(prednames)
v1 <- v2 <- character(lp*(lp+1)/2)
ctr <- 1
# can't use expand.grid because of duplicates but this is still fast
for ( i in seq_len(lp) ){
for (j in i:lp){
v1[ctr] <- prednames[i]
v2[ctr] <- prednames[j]
ctr <- ctr + 1
}
}
AdjDf <- data.frame(Gene1=v1, Gene2=v2)
if (Verbose) pb <- txtProgressBar(max=length(n), style=3)
for ( i in seq_len(length(n))){
AdjDf[,n[i]] <- unclass(preds[[i]])
if (Verbose) setTxtProgressBar(pb, i)
}
if (Verbose) cat('\n')
nc <- ncol(AdjDf)
rtk <- vapply(seq_len(nrow(AdjDf)), function(x) sum(is.na(AdjDf[x,3:nc])) < (nc/2 - 1),
FUN.VALUE=TRUE)
AdjDf <- AdjDf[rtk,]
rownames(AdjDf) <- NULL
if(!is.null(Subset)){
## What if the user wants pair c("B", "A"), but we only have c("A","B")?
## This solves that
AdjDf[,seq_len(2L)] <- t(apply(AdjDf[,seq_len(2L)], 1L, sort))
Subset[] <- t(apply(Subset, 1L, sort))
AdjDf <- merge(AdjDf, Subset)
}
if(!CombinePVal){
## First two columns are the gene names
pos_comp <- (unlist(lapply(AdjDf, class)) == "complex")[-(c(1,2))]
AdjDf_names <- AdjDf[,c(1,2)]
AdjDf_scores <- AdjDf_pvals <- AdjDf[,-(c(1,2))]
colnames(AdjDf_pvals) <- paste0(colnames(AdjDf_pvals), '.pval')
colnames(AdjDf_scores) <- paste0(colnames(AdjDf_scores), '.score')
## p values only for things that have p-values
AdjDf_pvals <- AdjDf_pvals[,pos_comp]
AdjDf_scores[,pos_comp] <- apply(AdjDf_scores[,pos_comp], 2L, Re)
AdjDf_pvals <- apply(AdjDf_pvals, 2L, Im)
AdjDf <- cbind(AdjDf_names, AdjDf_scores, AdjDf_pvals)
}
return(AdjDf)
}
PAStats <- function(predDf, paps){
l <- nrow(paps)
ocv1 <- vapply(predDf[,1], function(x) sum(paps[,x]) / l, 0)
ocv2 <- vapply(predDf[,2], function(x) sum(paps[,x]) / l, 0)
d <- abs(ocv1 - ocv2)
av <- (ocv1 + ocv2) / 2
return(list(avg=av, diff=d))
}
CheckBifurcating <- function(dend){
# Checks if a dendrogram is bifurcating
helperfunc <- function(node){
if (length(node) == 1) return(TRUE)
if (length(node) > 2) return(FALSE)
return(helperfunc(node[[1]]) & helperfunc(node[[2]]))
}
return(helperfunc(dend))
}
DCA_minimize_fxn <- function(params, R, spins, i){
sigi <- spins[,i]
sigj <- spins[,-i]
Hi <- params[i]
Jij <- params[-i]
sigprods <- sigi * sigj
firstterm <- colSums(Jij * t(sigprods))
secondterm <- Hi * sigi
Si <- mean(exp( -1 * (firstterm + secondterm)))
regularizer <- R * sum(abs(Jij))
retval <- log(Si + regularizer)
if (is.infinite(retval)){
retval <- -1 * .Machine$double.xmax
}
return(retval)
}
DCA_gradient_minimize_fxn <- function(params, R, spins, i){
grad <- numeric(length(params))
sigi <- spins[,i]
sigj <- spins[,-i]
Hi <- params[i]
Jij <- params[-i]
#Calculate gradient
sigprods <- sigi * sigj
firstterm <- colSums(Jij * t(sigprods))
secondterm <- Hi * sigi
interior <- exp(-1 * firstterm + secondterm)
entries <- interior * sigi * sigj
Si <- mean(interior)
if (is.null(dim(entries))){
Jpartials <- (mean(entries) / Si) - R
}
else
Jpartials <- (colMeans(entries) / Si) - R
Hpartial <- mean(interior * sigi) / Si
grad[-i] <- Jpartials
grad[i] <- Hpartial
return(grad)
}
DCA_logrise_run <- function(spins, links, regterm, printProgress=FALSE, Processors=1L){
Processors <- NormArgProcessors(Processors)
nnodes <- ncol(spins)
if (printProgress){
cat(' Finding topology...\n')
charsperline <- 73
charsvec <- diff(floor(seq(0, charsperline, by=charsperline/nnodes))) == 1
}
if (printProgress) cat(' |')
links <- simplify2array(mclapply(seq_len(nnodes),
function(i){
probs <- links[,i]
val <- optim(probs, DCA_minimize_fxn,
gr=DCA_gradient_minimize_fxn,
method='BFGS',
control=list(reltol=1e-6),
R=regterm, spins=spins, i=i)$par
if (printProgress && charsvec[i])
system2('printf', '=')
return(val)
}, mc.cores=Processors, mc.preschedule = TRUE
)
)
if (printProgress) cat('| ')
for ( i in seq_len(nrow(links)-1) ){
for ( j in (i+1):ncol(links)){
links[i,j] <- links[j,i] <- mean(links[i,j], links[j,i])
}
}
if (printProgress) cat('\n Done.\n Eliminating edges close to zero (may take a moment)...\n')
# Shrink close to zero to zero
vals <- links[upper.tri(links)]
h <- hist(vals, breaks=40, plot=FALSE)
bin0 <- which(h$breaks==0)
countsNorm <- h$counts == 0
lb <- length(countsNorm)
if (length(bin0) != 0 && lb > bin0){
up <- countsNorm[bin0:lb]
down <- countsNorm[bin0:1]
double_up <- which(up[-length(up)] & up[-1])
double_down <- which(down[-length(down)] & down[-1])
safeguards <- quantile(vals, c(0.15,0.85))
if ( length(double_up) == 0 ){
tmp <- which(up)
double_up <- ifelse(length(tmp) != 0, which(up)[1], NA)
} else {
double_up <- double_up[1]
}
uthresh <- ifelse(is.na(double_up), safeguards[2], min(h$breaks[bin0+double_up+1], safeguards[2]))
if ( length(double_down) == 0 ){
tmp <- which(down)
double_down <- ifelse(length(tmp) != 0, which(down)[1], NA)
} else {
double_down <- double_down[1]
}
lthresh <- ifelse(is.na(double_down), safeguards[1], max(h$breaks[bin0-double_down-1], safeguards[1]))
d <- diag(links)
links[(links < uthresh & links > 0) | (links > lthresh & links < 0)] <- 0
diag(links) <- d
}
max_degree <- max(rowSums(links != 0))
max_val <- max(links) * 2 #conservative estimate on link strength
bounding <- exp(max_degree * max_val)
if (printProgress) cat(' Refining edge weights...\n')
if (printProgress) cat(' |')
links <- simplify2array(
mclapply(seq_len(nnodes),
function(i) {
probs <- links[,i]
mask <- seq_len(nnodes) == i
nonzeros <- (probs != 0) | mask #have to include the self val
adjustment <- ifelse(i==1, 0, sum(!nonzeros[seq_len(i-1)]))
if ( sum(nonzeros) > 1 ){
pspins <- spins[,nonzeros]
pprobs <- probs[nonzeros]
val <- optim(pprobs, DCA_minimize_fxn,
gr=DCA_gradient_minimize_fxn,
method='L-BFGS-B',
lower=-bounding, upper=bounding,
R=0, spins=pspins, i=(i-adjustment))$par
probs[nonzeros] <- val
}
if (printProgress && charsvec[i]) system2('printf', '=')
return(probs)
},
mc.cores=Processors, mc.preschedule=TRUE))
if (printProgress) cat('| ')
for ( i in seq_len(nrow(links)-1) ){
for ( j in (i+1):ncol(links)){
links[i,j] <- links[j,i] <- mean(links[i,j], links[j,i])
}
}
if (max(abs(links)) != 0)
links <- links / max(abs(links))
if (printProgress) cat('\n Done.\n')
return(links)
}
DCA_logRISE <- function(PAProfiles, niter=1, reg_const=1,
Processors=1L, zero_cutoff=0, Verbose=TRUE, ...){
mult <- 1/niter
intPA <- PAProfiles + 0
intPA[intPA==0] <- -1
nc <- ncol(intPA)
pp <- FALSE
if (Verbose & niter==1) pp <- TRUE
else if (Verbose){
cat('Running DCA with', niter, 'iterations:\n')
pb <- txtProgressBar(max=niter, style=3)
}
truelinks <- countsmat <- matrix(0, nrow=nc, ncol=nc)
for ( i in seq_len(niter) ){
#initlinks <- matrix(0, nrow=nc, ncol=nc)
initlinks <- matrix(rnorm(nc**2), nrow=nc)
iterlink <- DCA_logrise_run(intPA, initlinks, reg_const,
printProgress=pp, Processors=Processors)
countsmat <- countsmat + (iterlink != 0)
truelinks <- truelinks + mult * iterlink
if(Verbose & !pp) setTxtProgressBar(pb, i)
}
if(Verbose & !pp) cat('\n')
if (zero_cutoff > 0) {
cutoff <- ifelse(zero_cutoff > 1, zero_cutoff, zero_cutoff * niter)
countsmat[countsmat < cutoff] <- 0
countsmat[countsmat > 0] <- 1
truelinks <- truelinks * countsmat
}
return(truelinks)
}
MICalc_C <- function(v1, v2, uv, pseudocount=1L){
stopifnot("'pseudocount' must be an integer"=is(pseudocount, 'integer'))
pseudocount <- min(0, pseudocount)
# Psuedocount=0.01 taken as default by Gerardos et al. (2022) in PLoS
a <- .Call('calcMIcVec', v1, v2, uv, pseudocount, PACKAGE="SynExtend")
return(a)
}
CorrComp_C <- function(fm, fsp, ssp, nv, nr){
on.exit(.C("cleanupFxn"))
stopifnot(nv == as.integer(nv))
stopifnot(nr == as.integer(nr))
stopifnot(all(fsp == as.integer(fsp)))
stopifnot(all(ssp == as.integer(ssp)))
a <- .Call('trimCovar', fm, as.integer(fsp),
as.integer(ssp), as.integer(nv),
as.integer(nr), PACKAGE="SynExtend")
return(a)
}
ResidueMIDend <- function(dend1, dend2, cutoff=0.9, comppct=0.25, useColoc, ...){
if (useColoc){
l2 <- gsub('([0-9]*)_.*', '\\1', labels(dend1))
l1 <- gsub('([0-9]*)_.*', '\\1', labels(dend2))
} else {
l1 <- labels(dend1)
l2 <- labels(dend2)
}
completeSet <- intersect(l1, l2)
if (length(completeSet) == 0){
return(0)
}
edges1 <- flatdendrapply(dend1,
\(x) list(vals=as.character(unlist(x)),
state=attr(x, 'state')),
NULL)
edges2 <- flatdendrapply(dend2,
\(x) list(vals=as.character(unlist(x)),
state=attr(x, 'state')),
NULL)
jsscore <- matrix(Inf, nrow=length(edges1), ncol=length(edges2))
for ( i in seq_along(edges1) ){
v1 <- intersect(edges1[[i]]$vals, completeSet)
for ( j in seq_along(edges2) ){
v2 <- intersect(edges2[[j]]$vals, completeSet)
s <- 1 - length(intersect(v1, v2)) / length(union(v1, v2))
jsscore[i,j] <- ifelse(is.nan(s), 1, s)
}
}
nr <- nrow(jsscore)
nc <- ncol(jsscore)
if (nr < nc){
tm <- edges1
edges1 <- edges2
edges2 <- tm
jsscore <- t(jsscore)
tm <- nc
nc <- nr
nr <- tm
}
#now guaranteed to have the larger dimension be nrow
rownames(jsscore) <- as.character(seq_len(nr))
colnames(jsscore) <- as.character(seq_len(nc))
# I'm just using a greedy matching here, couldn't figure out Hungarian
# and this also scales much better
pairings <- rep(NA, nc)
allvals <- rownames(jsscore)
for ( i in seq_len(nc) ){
ordered <- allvals[order(jsscore[,i])]
pos <- which.min(ordered %in% pairings)
if (jsscore[ordered[pos], i] < cutoff)
pairings[i] <- ordered[pos]
}
# need to catch this here, in case we don't find enough elements just pick
# random ones
checksum <- sum(is.na(pairings))
if (checksum > 0){
possible <- allvals[!(allvals %in% pairings)]
pairings[is.na(pairings)] <- sample(possible, checksum)
}
names(pairings) <- colnames(jsscore)
seqset1 <- seqset2 <- NULL
n <- names(pairings)
for ( i in seq_along(pairings) ){
a1 <- as.integer(pairings[i])
a2 <- as.integer(n[i])
if (i == 1){
seqset1 <- BStringSet(edges1[[a1]]$state)
seqset2 <- BStringSet(edges2[[a2]]$state)
} else {
seqset1 <- append(seqset1, edges1[[a1]]$state)
seqset2 <- append(seqset2, edges2[[a2]]$state)
}
}
names(seqset1) <- names(seqset2) <- seq_len(length(pairings))
res <- MISeqLevel(seqset1, seqset2, compressionpct=comppct)
return(res)
}
ResidueMISeqs <- function(seqs1, seqs2, lookup, Processors, CombinePVal, ...){
baseReturn <- ifelse(CombinePVal, 0, 0+0i)
if(ncol(seqs1) * ncol(seqs2) == 0){
return(baseReturn)
}
completeSet <- intersect(rownames(seqs1), rownames(seqs2))
if (length(completeSet) == 0){
return(baseReturn)
}
s1 <- seqs1[completeSet,,drop=FALSE]
s2 <- seqs2[completeSet,,drop=FALSE]
nseqs <- length(completeSet)
if(nseqs == 1){
return(baseReturn)
}
# add gap character
baseval <- length(lookup)+1L
AllMIs <- .Call("MIForSequenceSets", s1, s2, nseqs,
baseval, baseval, baseval+0.0, Processors)
AllMIs <- matrix(AllMIs, ncol=ncol(s1))
# APCm <- matrix(0, nrow=nrow(AllMIs), ncol=ncol(AllMIs))
# APCm[] <- rowMeans(AllMIs)
# APCm <- t(t(APCm)*colMeans(AllMIs))
# AllMIs <- AllMIs - (APCm) / mean(AllMIs)
#if(ncol(AllMIs) > nrow(AllMIs))
# AllMIs <- t(AllMIs)
meanEnt <- mean(AllMIs)
sdEnt <- sd(AllMIs)
#maxVals <- apply(AllMIs, 2L, max)
## Greedy pairing
maxVals <- numeric(min(dim(AllMIs))/2)
for(i in seq_along(maxVals)){
p <- arrayInd(which.max(AllMIs), dim(AllMIs))
maxVals[i] <- AllMIs[p]
AllMIs <- AllMIs[-p[1],-p[2],drop=FALSE]
}
pvals <- pnorm(maxVals, mean=meanEnt, sd=sdEnt, lower.tail=FALSE)
# Fisher's Method to combine p values
testStat <- -2 * sum(log(pvals))
totalP <- pchisq(testStat, df=2*length(pvals), lower.tail=FALSE)
maxVals <- mean(maxVals)
totalP <- 1-totalP
return(ifelse(CombinePVal, maxVals*totalP, complex(real=maxVals, imaginary=totalP)))
}
MISeqLevel <- function(seqSet1, seqSet2, compressionpct=0.25){
stopifnot('seqSets must be XStringSets'=is(seqSet1, 'XStringSet') && is(seqSet2, 'XStringSet'))
stopifnot('seqSetq sequences have differing lengths. Ensure you are using an aligned sequence set.'=
all(width(seqSet1) == width(seqSet1[1])))
stopifnot('seqSet2 sequences have differing lengths. Ensure you are using an aligned sequence set.'=
all(width(seqSet2) == width(seqSet2[1])))
stopifnot('compressionpct must be between 0 and 1'=
compressionpct < 1 && compressionpct > 0)
stopifnot('seqSets must be named'=!is.null(names(seqSet1)) && !is.null(names(seqSet2)))
stopifnot('seqSets must be named'=all(!is.na(c(names(seqSet1), names(seqSet2)))))
#stopifnot('Both inputs must be DNAStringSets'=
# is(seqSet1, 'DNAStringSet') && is(seqSet2, 'DNAStringSet'))
start2 <- width(seqSet1)[1] + 1
cali <- ConcatSeqs(seqSet1, seqSet2)
if (length(cali) == 0){
#warning('No sequences shared. Check seqSet names!')
return(0)
}
v <- CorrCompressSeqs(cali, start2, mvalpct=compressionpct)
if (!is.null(v$warn)){
#warning('Sequences identical.')
return(1)
}
compali <- v$xstrset
pos <- v$pos
newstart2 <- which.max(pos >= start2)
miscore <- CalcMIReduced(compali, newstart2)
# APC correction
nr <- nrow(miscore)
nc <- ncol(miscore)
if (nr == 0 || nc == 0){
return(0)
}
APC_corr <- matrix(colMeans(miscore), nr, nc, byrow = TRUE) *
matrix(rowMeans(miscore), nr, nc, byrow = FALSE) / mean(miscore)
miscore <- miscore - APC_corr
# scoring
miscore <- apply(abs(miscore), 2, max)
retval <- mean(miscore)
if (is.nan(retval))
retval <- 0
return(retval)
}
ConcatSeqs <- function(seqSet1, seqSet2){
unames <- intersect(names(seqSet1), names(seqSet2))
concatAli <- xscat(seqSet1[unames], seqSet2[unames])
names(concatAli) <- unames
return(concatAli)
}
CorrCompressSeqs <- function(myStringSet, start2, pseudocount=2, mvalpct=0.5,
gapLetters=c('-', '.'),
uncertainty_cutoff=0.158, MAF_cutoff=0.15){
freqMat <- consensusMatrix(myStringSet, as.prob=FALSE)
freqMat <- freqMat[rowSums(freqMat) != 0,]
freqMat <- freqMat + pseudocount
freqMat <- t(t(freqMat) / colSums(freqMat))
to_keep <- rep(FALSE, ncol(freqMat))
nongaploc <- !(rownames(freqMat) %in% gapLetters)
for ( i in seq_along(to_keep) ){
pos <- freqMat[,i]
pos_no_gap <- pos[nongaploc]
missing_prob <- sum(pos[gapLetters], na.rm=TRUE)
vals <- sort(pos_no_gap, decreasing=TRUE)
MAF <- ifelse(vals[1] == 0, 0, vals[2] / (vals[1] + vals[2]))
to_keep[i] <- missing_prob < uncertainty_cutoff && MAF > MAF_cutoff
}
# Need a guard case here
if (!any(to_keep)){
to_keep <- !to_keep
}
trimmedFreqMat <- freqMat[,to_keep]
colnames(trimmedFreqMat) <- which(to_keep)
fm <- unique(trimmedFreqMat, MARGIN=2)
nc <- ncol(fm)
num_vals <- ceiling(mvalpct * nc)
isInSecondSeq <- as.integer(colnames(fm)) >= start2
s2 <- which.max(isInSecondSeq)
firstSeqPos <- seq_len(s2-1)
if (length(firstSeqPos) == 0){
return(list(warn=TRUE, 1))
}
secondSeqPos <- seq_len(length(isInSecondSeq) - s2 + 1L) + s2 - 1L
# keeping the entire covariance matrix in memory is really hard
# this is more code but significantly more memory efficient
# the cost is slightly more runtime
corrs <- CorrComp_C(fm, firstSeqPos, secondSeqPos, num_vals, nrow(fm))
corrs <- unique(corrs)
if ( length(corrs) < num_vals ){
fsp <- firstSeqPos[!(firstSeqPos %in% corrs)]
ssp <- secondSeqPos[!(secondSeqPos %in% corrs)]
d <- ceiling((num_vals - length(corrs)) / 2)
l1 <- min(d, length(fsp))
l2 <- min(d, length(ssp))
corrs <- c(corrs, sample(fsp, l1), sample(ssp, l2))
}
upositions <- sort(as.integer(colnames(fm)[unique(corrs)]))
subsetXStr <- extractAt(myStringSet, IRanges(upositions, width=1))
return(list(xstrset=unstrsplit(subsetXStr), pos=upositions))
}
CalcMIReduced <- function(trimmedXStringSet, start2,
secondgroupstart=-1){
matxss <- as.matrix(trimmedXStringSet)
group1 <- seq_len(start2-1)
group2 <- seq_len(width(trimmedXStringSet[1]) - start2) + start2
u <- unique(c(matxss))
converter <- seq_len(length(u)) - 1L
names(converter) <- u
umat <- matrix(converter[matxss], ncol=ncol(matxss))
scores <- matrix(NA, nrow=length(group1), ncol=length(group2))
gapnum <- ifelse('-' %in% u, which(u=='-'), -1)
numunique <- length(u) - (gapnum!=-1)
ctr <- 0
for ( i in seq_along(group1) ){
p1 <- umat[,group1[i]]
subsetloc <- p1 != gapnum
for ( j in seq_along(group2) ){
p2 <- umat[,group2[j]]
fullsub <- subsetloc & (p2 != gapnum)
p1p <- p1[fullsub]
p2p <- p2[fullsub]
MI <- MICalc_C(p1p, p2p, numunique)
scores[i,j] <- MI
ctr <- ctr + 1
}
}
return(scores)
}
predictWithBuiltins <- function(preds, model=c("KEGG", "CORUM")){
# Key: (val is binary + 1)
# 000 => PP
# 001 => PP + PS
# 010 => PP + GO
# 011 => PP + PS + GO
# 100 => PP + SL
# 101 => PP + PS + SL
# 110 => PP + GO + SL
# 111 => PP + PS + GO + SL
.check_allin <- \(x,y){!(any(match(x,y,nomatch=0L)==0L))}
model <- match.arg(model)
pp_algs <- validate_EvoWeaver_methods("PhylogeneticProfiling")$Method
ps_algs <- validate_EvoWeaver_methods("PhylogeneticStructure")$Method
go_algs <- validate_EvoWeaver_methods("GeneOrganization")$Method
sl_algs <- validate_EvoWeaver_methods("SequenceLevel")$Method
alg_flags <- 0L
pred_cnames <- colnames(preds)
if(!all(pp_algs %in% pred_cnames)){
stop("Phylogenetic profiling algorithms are required for ensemble prediction.")
}
if(.check_allin(ps_algs, pred_cnames))
alg_flags <- alg_flags + 1L
if(.check_allin(go_algs, pred_cnames))
alg_flags <- alg_flags + 2L
if(.check_allin(sl_algs, pred_cnames))
alg_flags <- alg_flags + 4L
builtins <- get(data('BuiltInEnsembles', envir=environment()))
model <- builtins[[model]][[alg_flags+1L]]
predict(model, preds, type='response')
}
findSpeciesTree <- function(ew, Verbose=TRUE, NameFun=NULL, Processors=1L){
stopifnot("EvoWeaver object must contain dendrograms"=attr(ew, "useMT"))
if (attr(ew, "useColoc") && is.null(NameFun)){
NameFun <- function(x) gsub('([^_])_.*', '\\1', x)
}
SpecTree <- SuperTree(unclass(ew), NAMEFUN=NameFun,
Verbose=Verbose, Processors=Processors)
return(SpecTree)
}
## Residue stuff
find_dists_pos <- function(dend, useColoc=FALSE){
cutoff <- 100L
dend <- MapCharacters(dend)
dend <- find_dend_distances(dend, useColoc)
allPos <- names(sort(table(rapply(dend, \(x){
as.integer(gsub("[^0-9]([0-9]*)[^0-9]", "\\1", attr(x, 'change')))
}, how='unlist')), decreasing = TRUE))
if(length(allPos) > cutoff){
allPos <- allPos[seq_len(cutoff)]
}
# ensure they're always characters
labs <- as.character(names(attr(dend, 'distances')))
num_labels <- length(labs)
posVecs <- lapply(allPos, \(x) {
y <- rep(Inf, num_labels)
names(y) <- labs
return(y)
})
names(posVecs) <- allPos
#names(pm) <- as.character(allPos)
rapply(dend, \(x) {
pos <- gsub("[^0-9]([0-9]*)[^0-9]", "\\1", attr(x, 'change'))
d <- attr(x,'distances')
n <- names(d)
for (pv in pos){
if(!(pv %in% allPos)) next
curv <- posVecs[[pv]]
locs <- curv > d
curv[locs] <- d[locs]
posVecs[[pv]] <<- curv
}
return(NULL)
}, how='unlist')
for(i in seq_along(posVecs)){
p <- posVecs[[i]]
p[is.infinite(p)] <- NA_real_
posVecs[[i]] <- p
}
return(posVecs)
}
pair_residues <- function(pm1, pm2){
l1 <- length(pm1)
l2 <- length(pm2)
if(l1 >= l2){
pmL <- pm1
pmS <- pm2
} else {
pmL <- pm2
pmS <- pm1
l1 <- l2
l2 <- length(pm1)
}
if(l2 <= 3) return(list(R=0,P=0))
nameoverlap <- intersect(names(pmL[[1]]), names(pmS[[2]]))
if(length(nameoverlap) <= 2) return(list(R=0,P=1))
for(i in seq_len(l1)){
pmL[[i]] <- pmL[[i]][nameoverlap]
if(i <= l2)
pmS[[i]] <- pmS[[i]][nameoverlap]
}
## Greater value should always be columns
# Max pair because residues can have one to many contacts
CorrVal <- PVal <- rep(-Inf, l1)
ns <- names(pmS)
for(i in seq_len(l1)){
vCol <- pmL[[i]]
minCorr <- c(Inf, -1)
for(j in seq_len(l2)){
vRow <- pmS[[j]]
curcorr <- .Call("fastPearsonC", vRow, vCol)
if (curcorr[1] > CorrVal[i]){
CorrVal[i] <- curcorr[1]
# Alternative = 'greater'
# if it was 'either' it would be
# p = p < 0.5 ? 2*p : (1-p)*2
# I don't think 'either' makes sense
PVal[i] <- 1-pt(curcorr[2], curcorr[3]-2)
}
# Negative correlation is meaningless
# but it shouldn't count against scoring
if (CorrVal[i] < 0) CorrVal[i] <- 0
}
}
subs <- !is.na(PVal)
if(!sum(subs)) return(list(R=0,P=1))
PVal <- PVal[subs]
CorrVal <- CorrVal[subs]
# correction for zeros
PVal[PVal==0] <- 1e-16
meanP <- 1/sum(1/PVal)
meanR <- mean(CorrVal)
return(list(R=meanR, P=meanP))
}
combineDist <- function(dist1, dist2, weightedCombine=FALSE){
l1 <- attr(dist1, 'Labels')
l2 <- attr(dist2, 'Labels')
if(is.null(l1)){
l1 <- as.character(seq_len(attr(dist1, 'Size')))
attr(dist1, 'Labels') <- l1
}
if(is.null(l2)){
l2 <- as.character(seq_len(attr(dist2, 'Size')))
attr(dist2, 'Labels') <- l2
}
stopifnot('dist1 must be a superset of dist2'=all(l2 %in% l1))
pos2 <- vapply(l2, \(x) which(x==l1)[1], integer(1L))
n1 <- attr(dist1, 'Size')
n2 <- attr(dist2, 'Size')
if(weightedCombine){
mult <- 1/table(l2)
mult <- mult[l2]
} else {
mult <- rep(1.0, length(l2))
}
.C('R_combineDistObj', dist1, dist2, pos2, n1, n2, mult)[[1]]
}
fastCoph <- function(dend){
# DECIPHER:::Cophenetic, but uses new dendrapply for a performance boost
n <- attr(dend, "members")
d <- numeric(n*(n - 1)/2)
u <- unlist(dend)
o <- order(u)
u <- u[o]
labs <- labels(dend)[o]
# Move unlist() labels into 1:n space
dend <- rapply(dend,
function(y) {
y[] <- match(y[1L], u)
y
},
how="replace")
dendrapply(dend, function(x){
if(is.leaf(x)) return(x)
for(k in seq_along(x)){
h <- attr(x, "height") - attr(x[[k]], "height")
## sometimes the rapply loads these as char
## not really sure why, but coercing to int is sufficient
I <- as.integer(unlist(x[[k]]))
J <- seq_len(n)[-I]
d <<- .Call("se_cophenetic",
I,
J,
n,
d,
h,
PACKAGE="SynExtend")
}
x
}, how='post.order')
class(d) <- "dist"
attr(d, "Size") <- n
attr(d, "Diag") <- TRUE
attr(d, "Upper") <- TRUE
attr(d, "Labels") <- labs
return(d)
}
rowSumsOfDist <- function(dv){
n <- attr(dv, 'Size')
l <- attr(dv, 'Labels')
outSums <- numeric(n)
for(i in seq_len(n)){
lesservals <- seq_len(i-1)
lesservals <- n*(lesservals-1) - lesservals*(lesservals-1)/2 + i - lesservals
greatervals <- c()
if(i+1 <= n){
greatervals <- seq(i+1, n)
greatervals <- n*(i-1) - i*(i-1)/2 + greatervals - i
}
if(all(is.na(dv[c(lesservals, greatervals)]))){
outSums[i] <- NA
} else {
outSums[i] <- sum(dv[c(lesservals, greatervals)], na.rm=TRUE)
}
}
names(outSums) <- l
return(outSums)
}
trim_paralogs <- function(xss, verbose=TRUE){
n <- unique(names(xss))
lst <- vector('list', length(n))
names(lst) <- n
if(verbose) cat('Partitioning sequences...\n')
if(verbose) pb <- txtProgressBar(style=3, max=length(xss))
for(i in seq_along(xss)){
ni <- names(xss)[i]
if(is.null(lst[[ni]])){
lst[[ni]] <- xss[i]
} else {
lst[[ni]] <- c(lst[[ni]], xss[i])
}
if(verbose) setTxtProgressBar(pb, i)
}
if(verbose) cat('\nFinding best sequences...\n')
outSeqs <- NULL
if(verbose) pb <- txtProgressBar(style=3, max=length(lst))
for(i in seq_along(lst)){
if(length(lst[[i]]) <= 2){
choice <- 1L
} else {
seqs <- lst[[i]]
st <- seqtype(seqs)
seqs <- AlignSeqs(seqs, verbose=FALSE, processors=NULL)
seqs <- MaskAlignment(seqs)
seqs <- as(seqs, paste0(st, "StringSet"))
d <- DistanceMatrix(seqs, type='dist', verbose = FALSE)
d[is.na(d)] <- 2*max(d, na.rm=TRUE)
sums <- rowSumsOfDist(d)
choice <- which.min(sums)
}
if(is.null(outSeqs)){
outSeqs <- lst[[i]][choice]
} else {
outSeqs <- c(outSeqs, lst[[i]][choice])
}
if(verbose) setTxtProgressBar(pb, i)
}
if(verbose) cat('\n')
outSeqs
}
########
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.