Nothing
## tests
# nocov start
tests = function() {
## build labeled image x and reference y
y = readImage(system.file("images", "nuclei.tif", package="EBImage"))[,,1]
x = thresh(y, 10, 10, 0.05)
x = opening(x, makeBrush(5, shape='disc'))
x = bwlabel(x)
display(x)
display(y)
## standard call 88 features
ft = computeFeatures(x, y)
pft = computeFeatures(x, y, properties=TRUE)
stopifnot(all(colnames(ft)==pft$name))
## call without expandRef 49 features
ft = computeFeatures(x, y, expandRef=NULL)
pft = computeFeatures(x, y, expandRef=NULL, properties=TRUE)
stopifnot(all(colnames(ft)==pft$name))
## changing parameters
ft = computeFeatures(x, y, basic.quantiles=c(0.2, 0.3), haralick.scales=c(1, 4, 8), expandRef=NULL)
pft = computeFeatures(x, y, basic.quantiles=c(0.2, 0.3), haralick.scales=c(1, 4, 8), expandRef=NULL, properties=TRUE)
stopifnot(all(colnames(ft)==pft$name))
## call with 3 reference images
yc = list(d=y, t=flip(y), a=flop(y))
ft = computeFeatures(x, yc)
pft = computeFeatures(x, yc, properties=TRUE)
stopifnot(all(colnames(ft)==pft$name))
## test standardExpandRef
z = standardExpandRef(yc)
#str(z)
display(combine(z))
## image with one point
x2 = array(0, dim=dim(x))
x2[100, 100] = 1
ft = computeFeatures(x2, y)
}
# nocov end
## main function
computeFeatures = function(x, ref, methods.noref=c("computeFeatures.moment", "computeFeatures.shape"),
methods.ref=c("computeFeatures.basic", "computeFeatures.moment", "computeFeatures.haralick"),
xname="x", refnames, properties=FALSE, expandRef=standardExpandRef, ...) {
## check arguments
x = checkx(x)
ref = convertRef(ref, refnames)
refnames = names(ref)
nref = length(ref)
## expand ref
if (!is.null(expandRef)) {
ref = expandRef(ref, refnames)
refnames = names(ref)
nref = length(ref)
}
## compute features
if ( !isTRUE(properties) ) {
## prepare data
xs = splitObjects(x)
if (length(xs)==0) return(NULL)
## compute features without reference
features.noref = do.call(cbind, lapply(methods.noref, do.call, list(x=x, properties=FALSE, xs=xs, ...)))
## compute features with reference, for each channel
features.ref = lapply(1:nref, function(i) {
do.call(cbind, lapply(methods.ref, do.call, list(x=x, ref=ref[[i]], properties=FALSE, xs=xs, ...)))
})
names(features.ref) = refnames
## sum up data into a single matrix
features = c("0"=list(features.noref), features.ref)
features = features[!sapply(features, is.null)]
for (i in 1:length(features)) colnames(features[[i]]) = paste(names(features)[i], colnames(features[[i]]), sep=".")
features = do.call(cbind, features)
colnames(features) = paste(xname, colnames(features), sep=".")
features
} else {
## feature properties
pfeatures.noref = do.call(rbind, lapply(methods.noref, do.call, list(properties=TRUE, ...)))
pfeatures.ref = do.call(rbind, lapply(methods.ref, do.call, list(properties=TRUE, ...)))
pfeatures.ref = lapply(1:length(refnames), function(z) pfeatures.ref)
names(pfeatures.ref) = refnames
## sum up data
pfeatures = c("0"=list(pfeatures.noref), pfeatures.ref)
pfeatures = pfeatures[!sapply(pfeatures, is.null)]
for (i in 1:length(pfeatures)) pfeatures[[i]]$name = paste(names(pfeatures)[i], pfeatures[[i]]$name, sep=".")
pfeatures = do.call(rbind, pfeatures)
pfeatures$name = paste(xname, pfeatures$name, sep=".")
rownames(pfeatures) = NULL
pfeatures
}
}
## standard reference expansion
standardExpandRef = function(ref, refnames, filter = gblob()) {
## check arguments
ref = convertRef(ref, refnames)
nref = length(ref)
refnames = names(ref)
## adding joint channels
if (nref>1) {
for (i in 1:(nref-1)) {
for (j in (i+1):nref) {
refi = ref[[i]]
refj = ref[[j]]
jref0 = list( (refi - mean(refi)) * (refj - mean(refj)) )
names(jref0) = paste0(refnames[i], refnames[j])
ref = c(ref, jref0)
}
}
}
## adding granulometry by blob transform
bref = lapply(ref, function(r) filter2(r, filter)/2)
names(bref) = paste0("B", names(ref))
c(ref, bref)
}
## basic pixel-independant statistics
computeFeatures.basic = function(x, ref, properties=FALSE, basic.quantiles=c(0.01, 0.05, 0.5, 0.95, 0.99), xs, ...) {
qnames = paste0('b.q', gsub('\\.', '', as.character(basic.quantiles)))
if ( !isTRUE(properties) ) {
## check arguments
x = checkx(x)
if (missing(xs)) xs = splitObjects(x)
if (length(xs)==0) return(NULL)
ref = convertRef(ref)[[1]]
## compute features
features = do.call(rbind, lapply(xs, function(z) {
z = ref[z]
q = quantile(z, basic.quantiles)
names(q) = qnames
c(b.mean=mean(z), b.sd=sd(z), b.mad=mad(z), q)
}))
## special processing for single points
z = sapply(xs, length)==1
features[,'b.sd'] = ifelse(z, 0, features[,'b.sd'])
features
}
else {
## feature properties
data.frame(name=c("b.mean", "b.sd", "b.mad", qnames),
translation.invariant=TRUE,
rotation.invariant=TRUE)
}
}
## shape features
computeFeatures.shape = function(x, properties=FALSE, xs, ...) {
if ( !isTRUE(properties) ) {
## check arguments
x = checkx(x)
if (missing(xs)) xs = splitObjects(x)
if (length(xs)==0) return(NULL)
contours = ocontour(x)
## compute features
features = do.call(rbind, lapply(contours, function(z) {
cz = apply(z, 2, mean)
radius = sqrt(rowSums((z - rep(cz, each=nrow(z)))^2))
radius.mean = mean(radius)
radius.sd = sqrt(mean((radius - radius.mean)^2))
c(s.perimeter=nrow(z), s.radius.mean=radius.mean, s.radius.sd=radius.sd, s.radius.min=min(radius),
s.radius.max=max(radius))
}))
cbind(s.area=sapply(xs, length), features)
} else {
## feature properties
data.frame(name=c("s.area", "s.perimeter", "s.radius.mean", "s.radius.sd", "s.radius.min", "s.radius.max"),
translation.invariant = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE),
rotation.invariant = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE))
}
}
## image moments
computeFeatures.moment = function(x, ref, properties=FALSE, xs, ...) {
if ( !isTRUE(properties) ) {
## check arguments
x = checkx(x)
if (missing(xs)) xs = splitObjects(x)
if (length(xs)==0) return(NULL)
if (missing(ref)) ref = array(1, dim=dim(x))
ref = convertRef(ref)[[1]]
## image moments: computing m{pq} = sum_{x^p*y^q*f(x, y)}
m00 = sapply(xs, function(z) sum(ref[z]))
m10 = {w = row(ref)*ref ; sapply(xs, function(z) sum(w[z]))}
m01 = {w = col(ref)*ref ; sapply(xs, function(z) sum(w[z]))}
m20 = {w = row(ref)^2*ref ; sapply(xs, function(z) sum(w[z]))}
m02 = {w = col(ref)^2*ref ; sapply(xs, function(z) sum(w[z]))}
m11 = {w = col(ref)*row(ref)*ref ; sapply(xs, function(z) sum(w[z]))}
## derive interesting geometric quantities from image moments
## done by diagonalisation of the centered image moment matrix
## see http://en.wikipedia.org/wiki/Image_moment
suppressWarnings({
cx = m10/m00 ## center of mass x
cy = m01/m00 ## center of mass y
mu20 = m20/m00 - cx^2 ## temporary quantity
mu02 = m02/m00 - cy^2 ## temporary quantity
mu11 = m11/m00 - cx*cy ## temporary quantity
det = sqrt(4*mu11^2 + (mu20 - mu02)^2) ## temporary quantity
theta = atan2(2*mu11, (mu20 - mu02))/2 ## angle
l1 = sqrt((mu20 + mu02 + det)/2)*4 ## major axis
l2 = sqrt((mu20 + mu02 - det)/2)*4 ## minor axis
eccentricity = sqrt(1-l2^2/l1^2) ## eccentricity
})
## special processing for single points
features = cbind(m.cx=cx, m.cy=cy, m.majoraxis=l1, m.eccentricity=eccentricity, m.theta=theta)
features[is.na(features) | is.nan(features)] = 0
features
} else {
## feature properties
data.frame(name=c("m.cx", "m.cy", "m.majoraxis", "m.eccentricity", "m.theta"),
translation.invariant = c(FALSE, FALSE, TRUE, TRUE, TRUE),
rotation.invariant = c(TRUE, TRUE, TRUE, TRUE, FALSE))
}
}
## haralick features
## h.*: haralick features
computeFeatures.haralick = function(x, ref, properties=FALSE, haralick.nbins=32, haralick.scales=c(1, 2), xs, ...) {
snames = paste0("s", haralick.scales)
if ( !isTRUE(properties) ) {
## check arguments
x = checkx(x)
if (missing(xs)) xs = splitObjects(x)
if (length(xs)==0) return(NULL)
ref = convertRef(ref)[[1]]
## clip data
ref[ref>1] = 1
ref[ref<0] = 0
features = lapply(haralick.scales, function(scale) {
if (scale>1) {
combx = seq(1, nrow(x), by=scale)
comby = seq(1, ncol(x), by=scale)
xscaled = x[combx, comby]
refscaled = ref[combx, comby]
} else {
xscaled = x
refscaled = ref
}
hf = .haralickFeatures(xscaled, refscaled, nc=haralick.nbins)
## after scaling, xscaled may not contain the original object labels
## fortunately, .haralickFeatures() leave 0-row for them, therefore, the data
## is kept synceda and it is enough to fill up hf with 0-row to level up to
## the original number of objects
rbind(hf, matrix(0, nrow=max(x)-max(xscaled), ncol=ncol(hf)))
})
for (i in 1:length(features)) colnames(features[[i]]) = paste(colnames(features[[i]]), snames[i], sep=".")
do.call(cbind, features)
} else {
## feature properties
hnames = paste("h", c("asm", "con", "cor", "var", "idm", "sav", "sva", "sen", "ent", "dva", "den", "f12", "f13"), sep=".")
names = paste(hnames, rep(snames, each=length(hnames)), sep=".")
data.frame(name=names, translation.invariant=TRUE, rotation.invariant=TRUE)
}
}
## make a blob
gblob = function(x0=15, n=49, alpha=0.8, beta=1.2) {
xx = seq(-x0, x0, length.out=n)
xx = matrix(xx, nrow=length(xx), ncol=length(xx))
xx = sqrt(xx^2+t(xx)^2)
z = dnorm(xx, mean=0, sd=alpha) - 0.65*dnorm(xx, mean=0, sd=beta)
z/sum(z)
}
## convert ref into a list of images, for fast processing
convertRef = function(ref, refnames) {
if (!is.array(ref) && !is.list(ref)) stop("'ref' must be an array or a list containing the reference images")
if (is.array(ref)) {
nref = numberOfFrames(ref, 'total')
if (inherits(ref, "Image")) ref = imageData(ref)
ndim = length(dim(ref))
if (ndim==2) ref = list(ref)
else if (ndim==3) ref = lapply(1:nref, function(i) ref[,,i])
else stop ("'ref' must be a 2D or 3D array")
}
else if (is.list(ref)) {
nref = length(ref)
if (missing(refnames) && !is.null(names(ref))) refnames = names(ref)
## sanity check
ref = lapply(ref, function(r) {
ndim = length(dim(r))
if (inherits(r, "Image")) r = imageData(r)
if (ndim<2 || ndim>3) stop ("'ref' must contain only 2D arrays")
else if (ndim==3) {
if (dim(r)[3]>1) stop ("'ref' must contain only 2D arrays")
else r = r[,,1]
}
r
})
}
if (missing(refnames)) refnames = letters[1:nref]
if (length(refnames)!=nref) stop ("'refnames' must have the same length as 'ref'")
names(ref) = refnames
ref
}
## check x
checkx = function(x) {
if (!is.array(x)) stop("'x' must be a 2D array")
if (inherits(x, "Image")) x = imageData(x)
ndim = length(dim(x))
if (ndim<2||ndim>3) stop("'x' must be a 2D array")
if (ndim==3) {
if (dim(x)[3]>1) stop("'x' must be a 2D array")
else x = x[,,1]
}
x
}
## split an labelled image into list of points
splitObjects = function(x) {
z = which(as.integer(x)>0L)
split(z, x[z])
}
.haralickMatrix <- function(x, ref, nc=32) {
checkCompatibleImages(x, ref)
rref <- range.default(ref)
if ( rref[1] < 0 || rref[2] > 1 ) {
ref[ref<0] = 0
ref[ref>1] = 1
warning( "Values in 'ref' have been limited to the range [0,1]" )
}
res <- .Call(C_haralickMatrix, castImage(x), castImage(ref), as.integer(nc))
return( res )
}
.haralickFeatures <- function(x, ref, nc=32) {
validImage(x)
hm <- .haralickMatrix(x=x, ref=ref, nc=nc)
if ( is.null(hm) || !(is.array(hm) || is.list(hm)) ) return( NULL )
do.features <- function(m) {
if (dim(m)[3]>0) res <- .Call(C_haralickFeatures, m)
else res = matrix(0, nrow=0, ncol=13) ## no objects
if ( is.matrix(res) )
colnames(res) <- c("h.asm", "h.con", "h.cor", "h.var", "h.idm", "h.sav", "h.sva",
"h.sen", "h.ent", "h.dva", "h.den", "h.f12", "h.f13")
res
}
if ( !is.list(hm) ) return( do.features(hm) )
lapply( hm, do.features )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.