# load ViSEAGO and mouse db package library(ViSEAGO) # knitr document options knitr::opts_chunk$set( eval=FALSE,echo=TRUE,fig.pos = 'H', fig.width=6,message=FALSE,comment=NA,warning=FALSE )
In this vignette, we perform a functional Gene Set Enrichment Analysis (GSEA) from differential Expression analysis from genes of luminal cells in the mammary gland. (see utils::vignette("mouse_bioconducor", package ="ViSEAGO")
)
We load examples files from r BiocStyle::Biocpkg("ViSEAGO")
package using system.file
from the locally installed package. We read gene identifiers (GeneID) and corresponding statistical values (BH padj) for all results.
in this example, gene identifiers were ranked based on the BH padj from Differential expression analysis.
# load gene identifiants and padj test results from Differential Analysis complete tables PregnantvsLactate<-data.table::fread( system.file( "extdata/data/input", "pregnantvslactate.complete.txt", package = "ViSEAGO" ), select = c("Id","padj") ) VirginvsLactate<-data.table::fread( system.file( "extdata/data/input", "virginvslactate.complete.txt", package = "ViSEAGO" ), select = c("Id","padj") ) VirginvsPregnant<-data.table::fread( system.file( "extdata/data/input", "virginvspregnant.complete.txt", package = "ViSEAGO" ), select = c("Id","padj") ) # rank Id based on statistical value (BH padj in this example) data.table::setorder(PregnantvsLactate,padj) data.table::setorder(VirginvsLactate,padj) data.table::setorder(VirginvsPregnant,padj)
Here, we display the header from the PregnantvsLactate ranked data.table.
# show the ten first lines of genes_DE (same as genes_ref)
PregnantvsLactate
In this study, we build a myGENE2GO
object using the Bioconductor r BiocStyle::Biocpkg("org.Mm.eg.db")
database package for the mouse species. This object contains all available GO annotations for categories Molecular Function (MF), Biological Process (BP), and Cellular Component (CC).
NB: Don't forget to check if the last current annotation database version is installed in your R session! See ViSEAGO::available_organisms(Bioconductor)
.
# connect to Bioconductor Bioconductor<-ViSEAGO::Bioconductor2GO() # load GO annotations from Bioconductor myGENE2GO<-ViSEAGO::annotate( "org.Mm.eg.db", Bioconductor )
# display summary
myGENE2GO
cat( "- object class: gene2GO - database: Bioconductor - stamp/version: 2019-Jul10 - organism id: org.Mm.eg.db GO annotations: - Molecular Function (MF): 22707 annotated genes with 91986 terms (4121 unique terms) - Biological Process (BP): 23210 annotated genes with 164825 terms (12224 unique terms) - Cellular Component (CC): 23436 annotated genes with 107852 terms (1723 unique terms)" )
We perform a functional Gene Set Enrichment Analysis (GSEA) from differential Expression analysis from genes of luminal cells in the mammary gland.
Here, gene list were ranked based on the BH padj from Differential expression analysis.
The enriched Biological process (BP) are obtained using a GSEA test with ViSEAGO::runfgsea
, which is a wrapper from algorithms developped in r BiocStyle::Biocpkg("fgsea")
package @fgsea.
we perform the GO enrichment tests for BP category with fgseaMultilevel
algorithm.
# perform fgseaMultilevel tests BP_PregnantvsLactate<-ViSEAGO::runfgsea( geneSel=PregnantvsLactate, ont="BP", gene2GO=myGENE2GO, method ="fgseaMultilevel", params = list( scoreType = "pos", minSize=5 ) ) BP_VirginvsLactate<-ViSEAGO::runfgsea( geneSel=VirginvsLactate, gene2GO=myGENE2GO, ont="BP", method ="fgseaMultilevel", params = list( scoreType = "pos", minSize=5 ) ) BP_VirginvsPregnant<-ViSEAGO::runfgsea( geneSel=VirginvsPregnant, gene2GO=myGENE2GO, ont="BP", method ="fgseaMultilevel", params = list( scoreType = "pos", minSize=5 ) )
We combine the results of the three GSEA tests into an object using ViSEAGO::merge_enrich_terms
method.
# merge fgsea results BP_sResults<-ViSEAGO::merge_enrich_terms( cutoff=0.01, Input=list( PregnantvsLactate="BP_PregnantvsLactate", VirginvsLactate="BP_VirginvsLactate", VirginvsPregnant="BP_VirginvsPregnant" ) )
# display a summary
BP_sResults
cat( "- object class: enrich_GO_terms - ontology: BP - method: fgsea - summary: PregnantvsLactate method : fgseaMultilevel sampleSize : 101 minSize : 5 maxSize : Inf eps : 0 scoreType : pos nproc : 0 gseaParam : 1 BPPARAM : fgseaMultilevel absEps : 101 VirginvsLactate method : fgseaMultilevel sampleSize : 101 minSize : 5 maxSize : Inf eps : 0 scoreType : pos nproc : 0 gseaParam : 1 BPPARAM : fgseaMultilevel absEps : 101 VirginvsPregnant method : fgseaMultilevel sampleSize : 101 minSize : 5 maxSize : Inf eps : 0 scoreType : pos nproc : 0 gseaParam : 1 BPPARAM : fgseaMultilevel absEps : 101- enrichment pvalue cutoff: PregnantvsLactate : 0.01 VirginvsLactate : 0.01 VirginvsPregnant : 0.01 - enrich GOs (in at least one list): 184 GO terms of 3 conditions. PregnantvsLactate : 67 terms VirginvsLactate : 58 terms VirginvsPregnant : 64 terms" )
Now you can follow mouse bioconductor vignette for next steps beginning with 3.3 Graphs of GO enrichment tests section (utils::vignette("mouse_bioconducor", package ="ViSEAGO")
).
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.