Description Usage Arguments Details Value References See Also Examples
combine results from GO enrichment tests (obtained with topGO package) or from fgsea (obtained with runfgsea
method),
for a given ontology (MF, BP, or CC).
1 2 3 4 | merge_enrich_terms(Input, cutoff = 0.01, envir = .GlobalEnv)
## S4 method for signature 'list'
merge_enrich_terms(Input, cutoff = 0.01, envir = .GlobalEnv)
|
Input |
a list containing named elements. Each element must contain the name of:
|
cutoff |
default pvalue cutoff (default to 0.01). Several cutoff can be use in the same order as list elements. |
envir |
objects environment (default to .GlobalEnv). |
This method extracts for each result of GO enrichment test: informations about GO term (identifiant, name, and description), gene frequency (number of significant genes / Annotated genes), pvalue, -log10(pvalue), significant genes identifiants (GeneID, or Ensembl ID, or uniprot accession), and gene symbols. At the last, this method builds a merged data.table of enriched GO terms at least once and provides all mentionned columns.
an enrich_GO_terms-class
object.
Matt Dowle and Arun Srinivasan (2017). data.table: Extension of data.frame. R package version 1.10.4. https://CRAN.R-project.org/package=data.table
Herve Pages, Marc Carlson, Seth Falcon and Nianhua Li (2017). AnnotationDbi: Annotation Database Interface. R package version 1.38.0.
Other GO_terms:
GOcount()
,
GOterms_heatmap()
,
annotate()
,
create_topGOdata()
,
gene2GO-class
,
runfgsea()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | ## topGO terms enrichment
# load genes identifiants (GeneID,ENS...) universe/background (Expressed genes)
background_L<-scan(
system.file(
"extdata/data/input",
"background_L.txt",
package = "ViSEAGO"
),
quiet=TRUE,
what=""
)
# load Differentialy Expressed (DE) gene identifiants from files
PregnantvslactateDE<-scan(
system.file(
"extdata/data/input",
"pregnantvslactateDE.txt",
package = "ViSEAGO"
),
quiet=TRUE,
what=""
)
VirginvslactateDE<-scan(
system.file(
"extdata/data/input",
"virginvslactateDE.txt",
package = "ViSEAGO"
),
quiet=TRUE,
what=""
)
VirginvspregnantDE<-scan(
system.file(
"extdata/data/input",
"virginvspregnantDE.txt",
package="ViSEAGO"
),
quiet=TRUE,
what=""
)
## Not run:
# connect to Bioconductor
Bioconductor<-ViSEAGO::Bioconductor2GO()
# load GO annotations from Bioconductor
myGENE2GO<-ViSEAGO::annotate(
"org.Mm.eg.db",
Bioconductor
)
# create topGOdata for BP for each list of DE genes
BP_Pregnantvslactate<-ViSEAGO::create_topGOdata(
geneSel=PregnantvslactateDE,
allGenes=background_L,
gene2GO=myGENE2GO,
ont="BP",
nodeSize=5
)
BP_Virginvslactate<-ViSEAGO::create_topGOdata(
geneSel=VirginvslactateDE,
allGenes=background_L,
gene2GO=myGENE2GO,
ont="BP",
nodeSize=5
)
BP_Virginvspregnant<-ViSEAGO::create_topGOdata(
geneSel=VirginvspregnantDE,
allGenes=background_L,
gene2GO=myGENE2GO,
ont="BP",
nodeSize=5
)
# perform TopGO tests
elim_BP_Pregnantvslactate<-topGO::runTest(
BP_L_pregnantvslactate,
algorithm ="elim",
statistic = "fisher"
)
elim_BP_Virginvslactate<-topGO::runTest(
BP_L_virginvslactate,
algorithm ="elim",
statistic = "fisher"
)
elim_BP_Virginvspregnant<-topGO::runTest(
BP_L_virginvspregnant,
algorithm ="elim",
statistic = "fisher"
)
# merge topGO results
BP_sResults<-ViSEAGO::merge_enrich_terms(
Input=list(
Pregnantvslactate=c("BP_Pregnantvslactate","elim_BP_Pregnantvslactate"),
Virginvslactate=c("BP_Virginvslactate","elim_BP_Virginvslactate"),
Virginvspregnant=c("BP_Virginvspregnant","elim_BP_Virginvspregnant")
)
)
## End(Not run)
## fgsea analysis
# load gene identifiants and padj test results from Differential Analysis complete tables
PregnantvsLactate<-data.table::fread(
system.file(
"extdata/data/input",
"pregnantvslactate.complete.txt",
package = "ViSEAGO"
),
select = c("Id","padj")
)
VirginvsLactate<-data.table::fread(
system.file(
"extdata/data/input",
"virginvslactate.complete.txt",
package = "ViSEAGO"
),
select = c("Id","padj")
)
VirginvsPregnant<-data.table::fread(
system.file(
"extdata/data/input",
"virginvspregnant.complete.txt",
package = "ViSEAGO"
),
select = c("Id","padj")
)
# rank Id based on statistical value (padj)
PregnantvsLactate<-data.table::setorder(PregnantvsLactate,padj)
VirginvsLactate<-data.table::setorder(VirginvsLactate,padj)
VirginvsPregnant<-data.table::setorder(VirginvsPregnant,padj)
## Not run:
# connect to Bioconductor
Bioconductor<-ViSEAGO::Bioconductor2GO()
# load GO annotations from Bioconductor
myGENE2GO<-ViSEAGO::annotate(
"org.Mm.eg.db",
Bioconductor
)
# perform fgseaMultilevel tests
BP_PregnantvsLactate<-runfgsea(
geneSel=PregnantvsLactate,
gene2GO=myGENE2GO,
ont="BP",
params = list(
scoreType = "pos",
minSize=5
)
)
BP_VirginvsLactate<-runfgsea(
geneSel=VirginvsLactate,
gene2GO=myGENE2GO,
ont="BP",
params = list(
scoreType = "pos",
minSize=5
)
)
BP_VirginvsPregnant<-runfgsea(
geneSel=VirginvsPregnant,
gene2GO=myGENE2GO,
ont="BP",
params = list(
scoreType = "pos",
minSize=5
)
)
# merge fgsea results
BP_sResults<-merge_enrich_terms(
cutoff=0.01,
Input=list(
PregnantvsLactate="BP_PregnantvsLactate",
VirginvsLactate="BP_VirginvsLactate",
VirginvsPregnant="BP_VirginvsPregnant"
)
)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.