Description Usage Arguments Details Value References See Also Examples
This method computes a clustering heatmap based on GO terms semantic similarity.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | GOterms_heatmap(
myGOs,
showIC = TRUE,
showGOlabels = TRUE,
heatmap_colors = c("#ffffff", "#99000D"),
GO.tree = list(tree = list(distance = "Wang", aggreg.method = "ward.D2", rotate =
NULL), cut = list(dynamic = list(pamStage = TRUE, pamRespectsDendro = TRUE, deepSplit
= 2, minClusterSize = 2))),
samples.tree = NULL
)
## S4 method for signature 'GO_SS'
GOterms_heatmap(
myGOs,
showIC = TRUE,
showGOlabels = TRUE,
heatmap_colors = c("#ffffff", "#99000D"),
GO.tree = list(tree = list(distance = "Wang", aggreg.method = "ward.D2", rotate =
NULL), cut = list(dynamic = list(pamStage = TRUE, pamRespectsDendro = TRUE, deepSplit
= 2, minClusterSize = 2))),
samples.tree = NULL
)
|
myGOs |
a |
showIC |
|
showGOlabels |
|
heatmap_colors |
pvalues color range with white to Sangria collors by default (c("#ffffff","#99000D")). |
GO.tree |
a named
|
samples.tree |
a named
|
This method computes a clustering heatmap based on GO terms semantic similarity (computed with compute_SS_distances
).
The dendrogram produced could be cutted in static or dynamic mode.
build dendrograms on GO terms and optionally on samples.
cut in static or dynamic mode and color the dendrogram branchs.
build an interactive clustering heatmap based on heatmaply
.
a GO_clusters-class
object.
Matt Dowle and Arun Srinivasan (2017). data.table: Extension of 'data.frame'. R package version 1.10.4. https://CRAN.R-project.org/package=data.table.
Tal Galili (2015). dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics. DOI:10.1093/bioinformatics/btv428.
Tal Galili (2017). heatmaply: Interactive Cluster Heat Maps Using 'plotly'. R package version 0.9.1. https://CRAN.R-project.org/package=heatmaply.
Peter Langfelder, Bin Zhang and with contributions from Steve Horvath (2016). dynamicTreeCut: Methods for Detection of Clusters in Hierarchical Clustering Dendrograms. R package version 1.63-1. https://CRAN.R-project.org/package=dynamicTreeCut.
Erich Neuwirth (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColorBrewer.
Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec and Pedro Despouy (2017). plotly: Create Interactive Web Graphics via 'plotly.js'. R package version 4.6.0. https://CRAN.R-project.org/package=plotly.
Hadley Wickham (2016). scales: Scale Functions for Visualization. R package version 0.4.1. https://CRAN.R-project.org/package=scales.
H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
Other GO_terms:
GOcount()
,
annotate()
,
create_topGOdata()
,
gene2GO-class
,
merge_enrich_terms()
,
runfgsea()
Other semantic_similiarity:
GOclusters_heatmap()
Other visualization:
GOclusters_heatmap()
,
GOcount()
,
Upset()
,
available_organisms()
,
overLapper()
,
show_heatmap()
,
show_table()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | # load data example
utils::data(
myGOs,
package="ViSEAGO"
)
## Not run:
# compute GO terms Semantic Similarity distances
myGOs<-ViSEAGO::compute_SS_distances(
myGOs,
distance="Wang"
)
# GOtermsHeatmap with default parameters
Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
myGOs,
showIC=TRUE,
showGOlabels=TRUE,
GO.tree=list(
tree=list(
distance="Wang",
aggreg.method="ward.D2",
rotate=NULL
),
cut=list(
dynamic=list(
pamStage=TRUE,
pamRespectsDendro=TRUE,
deepSplit=2,
minClusterSize =2
)
)
),
samples.tree=NULL
)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.