clusters_cor-methods: Compute distance matrix between dendrograms partitions.

Description Usage Arguments Value References See Also Examples

Description

Build a distance or correlation matrix between partitions from dendrograms.

Usage

1
2
3
4
clusters_cor(clusters, method = "adjusted.rand")

## S4 method for signature 'list,character'
clusters_cor(clusters, method = "adjusted.rand")

Arguments

clusters

a list of GO_clusters-class objects, from GOterms_heatmap or GOclusters_heatmap, named as character.

method

available methods ("vi", "nmi", "split.join", "rand", or "adjusted.rand") from igraph package compare function.

Value

a distance or a correlation matrix.

References

Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.org.

See Also

Other GO_clusters: GO_clusters-class, GOclusters_heatmap(), compare_clusters(), show_heatmap(), show_table()

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# load example object
data(
    myGOs,
    package="ViSEAGO"
)

## Not run: 
# compute Semantic Similarity (SS)
myGOs<-ViSEAGO::compute_SS_distances(
    myGOs,
    distance=c("Resnik","Lin","Rel","Jiang","Wang")
)

# Resnik distance GO terms heatmap
Resnik_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
    myGOs,
    showIC=TRUE,
    showGOlabels=TRUE,
    GO.tree=list(
        tree=list(
            distance="Resnik",
            aggreg.method="ward.D2"
        ),
        cut=list(
            dynamic=list(
                deepSplit=2,
                minClusterSize =2
            )
        )
    ),
    samples.tree=NULL
)

# Lin distance GO terms heatmap
Lin_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
    myGOs,
    showIC=TRUE,
    showGOlabels=TRUE,
    GO.tree=list(
        tree=list(
            distance="Lin",
            aggreg.method="ward.D2"
        ),
        cut=list(
            dynamic=list(
                deepSplit=2,
                minClusterSize =2
            )
        )
    ),
    samples.tree=NULL
)

# Resnik distance GO terms heatmap
Rel_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
    myGOs,
    showIC=TRUE,
    showGOlabels=TRUE,
    GO.tree=list(
        tree=list(
            distance="Rel",
            aggreg.method="ward.D2"
        ),
        cut=list(
            dynamic=list(
                deepSplit=2,
                minClusterSize =2
            )
        )
    ),
    samples.tree=NULL
)

# Resnik distance GO terms heatmap
Jiang_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
    myGOs,
    showIC=TRUE,
    showGOlabels=TRUE,
    GO.tree=list(
        tree=list(
            distance="Jiang",
            aggreg.method="ward.D2"
        ),
        cut=list(
            dynamic=list(
                deepSplit=2,
                minClusterSize =2
            )
        )
    ),
    samples.tree=NULL
)

# Resnik distance GO terms heatmap
Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
    myGOs,
    showIC=TRUE,
    showGOlabels=TRUE,
    GO.tree=list(
        tree=list(
            distance="Wang",
            aggreg.method="ward.D2"
        ),
        cut=list(
            dynamic=list(
                deepSplit=2,
                minClusterSize =2
            )
        )
    ),
    samples.tree=NULL
)

## End(Not run)
# clusters to compare
clusters<-list(
    Resnik="Resnik_clusters_wardD2",
    Lin="Lin_clusters_wardD2",
    Rel="Rel_clusters_wardD2",
    Jiang="Jiang_clusters_wardD2",
    Wang="Wang_clusters_wardD2"
)

## Not run: 
# global dendrogram clustering correlation
clust_cor<-ViSEAGO::clusters_cor(
    clusters,
    method="adjusted.rand"
)

## End(Not run)

ViSEAGO documentation built on Nov. 8, 2020, 6:51 p.m.