Description Usage Arguments Value References See Also Examples
Build a distance or correlation matrix between partitions from dendrograms.
1 2 3 4 | clusters_cor(clusters, method = "adjusted.rand")
## S4 method for signature 'list,character'
clusters_cor(clusters, method = "adjusted.rand")
|
clusters |
a |
method |
available methods ("vi", "nmi", "split.join", "rand", or "adjusted.rand") from igraph package |
a distance or a correlation matrix.
Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.org.
Other GO_clusters:
GO_clusters-class
,
GOclusters_heatmap()
,
compare_clusters()
,
show_heatmap()
,
show_table()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | # load example object
data(
myGOs,
package="ViSEAGO"
)
## Not run:
# compute Semantic Similarity (SS)
myGOs<-ViSEAGO::compute_SS_distances(
myGOs,
distance=c("Resnik","Lin","Rel","Jiang","Wang")
)
# Resnik distance GO terms heatmap
Resnik_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
myGOs,
showIC=TRUE,
showGOlabels=TRUE,
GO.tree=list(
tree=list(
distance="Resnik",
aggreg.method="ward.D2"
),
cut=list(
dynamic=list(
deepSplit=2,
minClusterSize =2
)
)
),
samples.tree=NULL
)
# Lin distance GO terms heatmap
Lin_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
myGOs,
showIC=TRUE,
showGOlabels=TRUE,
GO.tree=list(
tree=list(
distance="Lin",
aggreg.method="ward.D2"
),
cut=list(
dynamic=list(
deepSplit=2,
minClusterSize =2
)
)
),
samples.tree=NULL
)
# Resnik distance GO terms heatmap
Rel_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
myGOs,
showIC=TRUE,
showGOlabels=TRUE,
GO.tree=list(
tree=list(
distance="Rel",
aggreg.method="ward.D2"
),
cut=list(
dynamic=list(
deepSplit=2,
minClusterSize =2
)
)
),
samples.tree=NULL
)
# Resnik distance GO terms heatmap
Jiang_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
myGOs,
showIC=TRUE,
showGOlabels=TRUE,
GO.tree=list(
tree=list(
distance="Jiang",
aggreg.method="ward.D2"
),
cut=list(
dynamic=list(
deepSplit=2,
minClusterSize =2
)
)
),
samples.tree=NULL
)
# Resnik distance GO terms heatmap
Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap(
myGOs,
showIC=TRUE,
showGOlabels=TRUE,
GO.tree=list(
tree=list(
distance="Wang",
aggreg.method="ward.D2"
),
cut=list(
dynamic=list(
deepSplit=2,
minClusterSize =2
)
)
),
samples.tree=NULL
)
## End(Not run)
# clusters to compare
clusters<-list(
Resnik="Resnik_clusters_wardD2",
Lin="Lin_clusters_wardD2",
Rel="Rel_clusters_wardD2",
Jiang="Jiang_clusters_wardD2",
Wang="Wang_clusters_wardD2"
)
## Not run:
# global dendrogram clustering correlation
clust_cor<-ViSEAGO::clusters_cor(
clusters,
method="adjusted.rand"
)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.