Description Usage Arguments Details Value References See Also Examples
This method perform fast gene set enrichment analysis (GSEA) using fgsea package.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | runfgsea(
geneSel,
gene2GO,
ont,
method = c("fgseaSimple", "fgseaMultilevel"),
params = list(nperm = 10000, sampleSize = 101, minSize = 1, maxSize = Inf, eps = 0,
scoreType = c("std", "pos", "neg"), nproc = 0, gseaParam = 1, BPPARAM = NULL, absEps
= NULL)
)
## S4 method for signature 'ANY,gene2GO,character'
runfgsea(
geneSel,
gene2GO,
ont,
method = c("fgseaSimple", "fgseaMultilevel"),
params = list(nperm = 10000, sampleSize = 101, minSize = 1, maxSize = Inf, eps = 0,
scoreType = c("std", "pos", "neg"), nproc = 0, gseaParam = 1, BPPARAM = NULL, absEps
= NULL)
)
|
geneSel |
a 2 columns |
gene2GO |
a |
ont |
the ontology used is "MF" (Molecuar Function), "BP" (Biological Process), or "CC" (Cellular Component). |
method |
fgsea method to use with |
params |
a |
This method is a convenient wrapper using a given ontology category (ont
argument)
in order to perform gene set enrichment analysis using fgseaSimple
or
fgseaMultilevel
algorithm from fgsea package.
The complete GO annotation is required (gene2GO
argument), and also a 2 columns data.table
with preranked
gene identifiants (in first column) based on statistical values (second column).
Defaults fgseaSimple parameters were used for perform test with nperm
set to 10,000.
Defaults fgseaMultilevel parameters were used for perform test
except the eps
arg that was set to 0 for better pvalues estimation.
A gene frequency (%) of leadingEdge/size is added to output data.table
.
a fgsea-class
object.
Korotkevich G, Sukhov V, Sergushichev A (2019). "Fast gene set enrichment analysis." bioRxiv. doi: 10.1101/060012, http://biorxiv.org/content/early/2016/06/20/060012.
Other GO_terms:
GOcount()
,
GOterms_heatmap()
,
annotate()
,
create_topGOdata()
,
gene2GO-class
,
merge_enrich_terms()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | # gene list
PregnantvsLactate<-data.table::fread(
system.file(
"extdata/data/input",
"pregnantvslactate.complete.txt",
package = "ViSEAGO"
),
select = c("Id","padj")
)
# rank Id based on statistical value (padj here)
PregnantvsLactate<-data.table::setorder(PregnantvsLactate,padj)
## Not run:
# connect to Bioconductor
Bioconductor<-ViSEAGO::Bioconductor2GO()
myGENE2GO<-ViSEAGO::annotate(
"org.Mm.eg.db",
Bioconductor
)
# run fgseaMultilevel
pregnantvslactate<-ViSEAGO::runfgsea(
geneSel=PregnantvsLactate,
gene2GO=myGENE2GO,
ont="BP",
method="fgseaMultilevel",
params=list(
minSize=5,
scoreType="pos"
)
)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.