Nothing
`subtype.cluster` <-
function(module.ESR1, module.ERBB2, module.AURKA, data, annot, do.mapping=FALSE, mapping, do.scale=TRUE, rescale.q=0.05, model.name="EEI", do.BIC=FALSE, plot=FALSE, filen, verbose=FALSE) {
#require(mclust)
if(missing(data) || missing(annot)) { stop("data, and annot parameters must be specified") }
sbtn <- c("ER-/HER2-", "HER2+", "ER+/HER2-")
sbtn2 <- c("ER-/HER2-", "HER2+", "ER+/HER2- High Prolif", "ER+/HER2- Low Prolif")
sig.esr1 <- sig.score(x=module.ESR1, data=data, annot=annot, do.mapping=do.mapping, mapping=mapping, verbose=FALSE)
sig.erbb2 <- sig.score(x=module.ERBB2, data=data, annot=annot, do.mapping=do.mapping, mapping=mapping, verbose=FALSE)
sig.aurka <- sig.score(x=module.AURKA, data=data, annot=annot, do.mapping=do.mapping, mapping=mapping, verbose=FALSE)
dd <- cbind("ESR1"=sig.esr1$score, "ERBB2"=sig.erbb2$score, "AURKA"=sig.aurka$score)
rnn <- rownames(dd)
m.mod <- list("ESR1"=cbind("probe"=as.character(sig.esr1$probe[ ,"new.probe"]), "EntrezGene.ID"=as.character(sig.esr1$probe[ ,"EntrezGene.ID"]), "coefficient"=module.ESR1[match(sig.esr1$probe[ ,"probe"], module.ESR1[ ,"probe"]), "coefficient"]), "ERBB2"=cbind("probe"=as.character(sig.erbb2$probe[ ,"new.probe"]), "EntrezGene.ID"=as.character(sig.erbb2$probe[ ,"EntrezGene.ID"]), "coefficient"=module.ERBB2[match(sig.erbb2$probe[ ,"probe"], module.ERBB2[ ,"probe"]), "coefficient"]), "AURKA"=cbind("probe"=as.character(sig.aurka$probe[ ,"new.probe"]), "EntrezGene.ID"=as.character(sig.aurka$probe[ ,"EntrezGene.ID"]), "coefficient"=module.AURKA[match(sig.aurka$probe[ ,"probe"], module.AURKA[ ,"probe"]), "coefficient"]))
if(do.scale) {
## the rescaling needs a large sample size!!!
## necessary if we want to validate the classifier using a different dataset
## the estimation of survival probabilities depends on the scale of the score
dd <- apply(dd, 2, function(x) { return((rescale(x, q=rescale.q, na.rm=TRUE) - 0.5) * 2) })
rownames(dd) <- rnn
} else { rescale.q <- NA }
rownames(dd) <- rownames(data)
dd2 <- dd
cc.ix <- complete.cases(dd[ , c("ESR1", "ERBB2"), drop=FALSE])
dd <- dd[cc.ix, , drop=FALSE]
if(all(!cc.ix)) { stop("None of ESR1 and ERBB2 genes are present!") }
if(do.BIC) {
## save the BIC values for the all the methods and a number of clusters from 1 to 10
cluster.bic <- mclust::Mclust(data=dd[ , c("ESR1", "ERBB2"), drop=FALSE], modelNames=model.name, G=1:10)$BIC
} else { cluster.bic <- NA }
#identify the 3 subtypes
rr3 <- mclust::Mclust(data=dd[ , c("ESR1", "ERBB2"), drop=FALSE], modelNames=model.name, G=3)
#redefine classification to be coherent with subtypes
uclass <- sort(unique(rr3$classification))
uclass <- uclass[!is.na(uclass)]
if(length(uclass) != 3) { stop("less than 3 subtypes are identified!") }
mm <- NULL
for(i in 1:length(uclass)) {
mm <- c(mm, median(dd[rr3$classification == uclass[i],"ERBB2"], na.rm=TRUE) )
}
nclass <- uclass[order(mm, decreasing=TRUE)[1]]
mm <- NULL
for(i in 1:length(uclass[-nclass])) {
mm <- c(mm, median(dd[rr3$classification == uclass[-nclass][i],"ESR1"], na.rm=TRUE))
}
nclass <- c(uclass[-nclass][order(mm, decreasing=TRUE)[2]], nclass, uclass[-nclass][order(mm, decreasing=TRUE)[1]])
#nclass contains the new order
rr3$z <- rr3$z[ ,nclass, drop=FALSE]
ncl <- rr3$classification
for(i in 1:length(uclass)) {
ncl[rr3$classification == nclass[i]] <- i
}
rr3$classification <- ncl
rr3$parameters$pro <- rr3$parameters$pro[nclass]
rr3$parameters$mean <- rr3$parameters$mean[ , nclass, drop=FALSE]
rr3$parameters$variance$sigma <- rr3$parameters$variance$sigma[ , , nclass, drop=FALSE]
if(plot) {
if(do.scale) {
myxlim <- myylim <- c(-2, 2)
} else {
myxlim <- range(dd[ , "ESR1"])
myylim <- range(dd[ , "ERBB2"])
}
## plot the mixture of Gaussians of the model
xx <- mclust:::grid1(50, range=myxlim)
yy <- mclust:::grid1(50, range=myylim)
xxyy <- mclust:::grid2(xx,yy)
#density
xyDens <- mclust::dens(modelName = rr3$modelName, data = xxyy, parameters = rr3$parameters)
xyDens <- matrix(xyDens, nrow = length(xx), ncol = length(yy))
par(pty = "s")
zz <- xyDens
#plot
persp(x = xx, y = yy, z = zz, xlim=myxlim, ylim=myylim, theta=-25, phi=30, expand=0.5, xlab="ESR1", ylab="ERBB2", zlab="Density", col="darkgrey", ticktype="detailed")
}
## use the previously computed model to fit a new model in a supervised manner
myclass <- mclust::unmap(rr3$classification)
dimnames(myclass)[[1]] <- dimnames(dd)[[1]]
mclust.tr <- mclust::mstep(modelName=model.name, data=dd[ , c("ESR1", "ERBB2"), drop=FALSE], z=myclass)
dimnames(mclust.tr$z) <- dimnames(myclass)
emclust.tr <- mclust::estep(modelName=model.name, data=dd[ , c("ESR1", "ERBB2"), drop=FALSE], parameters=mclust.tr$parameters)
dimnames(emclust.tr$z) <- dimnames(myclass)
class.tr <- mclust::map(emclust.tr$z, warn=FALSE)
names(class.tr) <- dimnames(dd)[[1]]
dimnames(mclust.tr$parameters$mean)[[2]] <- names(mclust.tr$parameters$pro) <- dimnames(mclust.tr$z)[[2]]
## subtypes
sbt <- rep(NA, nrow(data))
names(sbt) <- dimnames(data)[[1]]
sbt[names(class.tr)] <- sbtn[class.tr]
sbt.proba <- matrix(NA, nrow(data), ncol=ncol(emclust.tr$z), dimnames=list(dimnames(data)[[1]], sbtn))
sbt.proba[dimnames(emclust.tr$z)[[1]], ] <- emclust.tr$z
## discriminate between luminal A and B using AURKA
## since proliferation is a continuum we fit a Gaussian using AURKA expression of the ER+/HER2- tumors
tt <- mclust::Mclust(dd2[complete.cases(sbt, dd2[ , "AURKA"]) & sbt == sbtn[3], "AURKA"], modelNames="E", G=1)
gauss.prolif <- c("mean"=tt$parameters$mean, "sigma"=tt$parameters$variance$sigmasq)
sbt2 <- sbt
sbt2[sbt == sbtn[3]] <- NA
## probability that tumor is highly proliferative
pprolif <- pnorm(q=dd2[ , "AURKA"], mean=gauss.prolif["mean"], sd=gauss.prolif["sigma"], lower.tail=TRUE)
## high proliferation
sbt2[sbt == sbtn[3] & pprolif >= 0.5 & complete.cases(sbt, pprolif)] <- sbtn2[3]
## low proliferation
sbt2[sbt == sbtn[3] & pprolif < 0.5 & complete.cases(sbt, pprolif)] <- sbtn2[4]
## subtype probabilities for luminal B and A
sbt.proba2 <- matrix(NA, nrow(data), ncol=ncol(emclust.tr$z) + 1, dimnames=list(dimnames(data)[[1]], sbtn2))
tt <- sbt.proba[ , sbtn[3]]
tt2 <- pprolif
tt <- cbind(tt * tt2, tt * (1 - tt2))
colnames(tt) <- sbtn2[3:4]
sbt.proba2[ , sbtn2[1:2]] <- sbt.proba[ , sbtn[1:2]]
sbt.proba2[ , sbtn2[3:4]] <- tt[ , sbtn2[3:4]]
if(plot) {
## plot the clusters
mclust::mclust2Dplot(data=dd[ , c("ESR1", "ERBB2"), drop=FALSE], what="classification", classification=class.tr, parameters=mclust.tr$parameters, colors=c("darkred", "darkgreen", "darkblue"), xlim=myxlim, ylim=myylim)
legend(x="topleft", col=c("darkred", "darkgreen", "darkblue"), legend=sbtn, pch=mclust::mclust.options("classPlotSymbols")[1:length(uclass)], bty="n")
## plot the clusters with luminals A and B
mycol <- mypch <- sbt2
mycol[sbt2 == sbtn2[1]] <- "darkred"
mycol[sbt2 == sbtn2[2]] <- "darkgreen"
mycol[sbt2 == sbtn2[3]] <- "darkorange"
mycol[sbt2 == sbtn2[4]] <- "darkviolet"
mypch[sbt2 == sbtn2[1]] <- 17
mypch[sbt2 == sbtn2[2]] <- 0
mypch[sbt2 == sbtn2[3] | sbt2 == sbtn2[4]] <- 10
mypch <- as.numeric(mypch)
names(mycol) <- names(mypch) <- names(sbt2)
plot(x=dd[ , "ESR1"], y=dd[ , "ERBB2"], xlim=myxlim, ylim=myylim, xlab="ESR1", ylab="ERBB2", col=mycol[dimnames(dd)[[1]]], pch=mypch[dimnames(dd)[[1]]])
legend(x="topleft", col=c("darkred", "darkgreen", "darkorange", "darkviolet"), legend=sbtn2, pch=c(17, 0, 10, 10), bty="n")
## display the three circles representing the Gaussians
for(kk in 1:3) { mclust::mvn2plot(mu=mclust.tr$parameters$mean[ ,kk], sigma=mclust.tr$parameters$variance$sigma[ , , kk]) }
}
if(!missing(filen)) {
#save model parameters in a csv file for reuse
write(x=sprintf("# Benjamin Haibe-Kains. All rights reserved."), file=paste(filen, "csv", sep="."))
write(x=sprintf("# model.name: %s", model.name), append=TRUE, file=paste(filen, "csv", sep="."))
mymean <- t(mclust.tr$parameters$mean)
if(is.null(dimnames(mymean)[[1]])) { dimnames(mymean)[[1]] <- 1:nrow(mymean) }
for(i in 1:nrow(mymean)) { write(x=sprintf("# mean.%s: %g %g", dimnames(mymean)[[1]][i], mymean[i,1], mymean[i,2]), append=TRUE, file=paste(filen, "csv", sep=".")) }
mysigma <- diag(mysigma <- mclust.tr$parameters$variance$sigma[ , ,1])
write(x=sprintf("# sigma: %g %g", mysigma[1], mysigma[2]), append=TRUE, file=paste(filen, "csv", sep="."))
mypro <- mclust.tr$parameters$pro
write(x=sprintf("# pro: %g %g %g", mypro[1], mypro[2], mypro[3]), append=TRUE, file=paste(filen, "csv", sep="."))
myscale <- mclust.tr$parameters$variance$scale
write(x=sprintf("# scale: %g", myscale), append=TRUE, file=paste(filen, "csv", sep="."))
myshape <- mclust.tr$parameters$variance$shape
write(x=sprintf("# shape: %g %g", myshape[1], myshape[2]), append=TRUE, file=paste(filen, "csv", sep="."))
write(x=sprintf("# gaussian.AURKA.mean: %g", gauss.prolif[1]), append=TRUE, file=paste(filen, "csv", sep="."))
write(x=sprintf("# gaussian.AURKA.sigma: %g", gauss.prolif[2]), append=TRUE, file=paste(filen, "csv", sep="."))
write(x=sprintf("# rescale.q: %g", rescale.q), append=TRUE, file=paste(filen, "csv", sep="."))
write(paste("\"", c("module", dimnames(m.mod[[1]])[[2]]), "\"", collapse=",", sep=""), sep="", append=TRUE, file=paste(filen, "csv", sep="."))
write.m.file(m.mod, file=paste(filen, "csv", sep="."), col.names=FALSE, append=TRUE)
}
return(list("model"=c(mclust.tr["parameters"], list("gaussian.AURKA"=gauss.prolif), list("rescale.q"=rescale.q), list("mod"=m.mod)), "BIC"=cluster.bic, "subtype"=sbt, "subtype.proba"=sbt.proba, "subtype2"=sbt2, "subtype.proba2"=sbt.proba2, "module.scores"=dd2))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.