Nothing
setClass("MRexperiment", contains=c("eSet"), representation=representation(expSummary = "list"),prototype = prototype( new( "VersionedBiobase",versions = c(classVersion("eSet"),MRexperiment = "1.0.0" ))))
setMethod("[", "MRexperiment", function (x, i, j, ..., drop = FALSE) {
obj= callNextMethod()
if(!missing(j)){
obj@expSummary = new("list",expSummary=as(expSummary(x)[j,1:2,...,drop=drop],"AnnotatedDataFrame"),cumNormStat=x@expSummary$cumNormStat)
if(length(pData(obj))>0){
for(i in 1:length(pData(obj))){
if(is.factor(pData(obj)[,i])){
pData(obj)[,i] = factor(pData(obj)[,i])
} else {
pData(obj)[,i] = pData(obj)[,i]
}
}
}
}
obj
})
setMethod("colSums", signature ="MRexperiment", function (x, ...) {
callNextMethod(MRcounts(x),...)
})
setMethod("rowSums", signature="MRexperiment", function (x, ...) {
callNextMethod(MRcounts(x),...)
})
setMethod("rowMeans", signature="MRexperiment", function (x, ...) {
callNextMethod(MRcounts(x),...)
})
setMethod("colMeans", signature="MRexperiment", function (x, ...) {
callNextMethod(MRcounts(x),...)
})
#' Access the normalization factors in a MRexperiment object
#'
#' Function to access the scaling factors, aka the normalization factors, of
#' samples in a MRexperiment object.
#'
#' @name normFactors
#' @docType methods
#' @param object a \code{MRexperiment} object
#' @return Normalization scaling factors
#' @author Joseph N. Paulson
#' @examples
#'
#' data(lungData)
#' head(normFactors(lungData))
#'
setGeneric("normFactors",function(object){standardGeneric("normFactors")})
setGeneric("normFactors<-",function(object,value){standardGeneric("normFactors<-")})
setMethod("normFactors", signature="MRexperiment",function(object) {
nf <- expSummary(object)$normFactors
nf <- unlist(nf)
names(nf) <- sampleNames(object)
nf
})
#' Replace the normalization factors in a MRexperiment object
#'
#' Function to replace the scaling factors, aka the normalization factors, of
#' samples in a MRexperiment object.
#'
#' @name normFactors<-
#' @docType methods
#' @aliases normFactors<-,MRexperiment,numeric-method normFactors<-
#' @param object a \code{MRexperiment} object
#' @param value vector of normalization scaling factors
#' @return Normalization scaling factors
#' @author Joseph N. Paulson
#' @examples
#'
#' data(lungData)
#' head(normFactors(lungData)<- rnorm(1))
#'
setReplaceMethod("normFactors", signature=c(object="MRexperiment", value="numeric"),
function( object, value ) {
pData(object@expSummary$expSummary)$normFactors <- value
validObject( object )
object
})
#' Access sample depth of coverage from MRexperiment object
#'
#' Access the libSize vector represents the column (sample specific) sums of features,
#' i.e. the total number of reads for a sample or depth of coverage. It is used by
#' \code{\link{fitZig}}.
#'
#' @name libSize
#' @docType methods
#' @param object a \code{MRexperiment} object
#' @return Library sizes
#' @author Joseph N. Paulson
#' @examples
#'
#' data(lungData)
#' head(libSize(lungData))
#'
setGeneric("libSize",function(object){standardGeneric("libSize")})
setGeneric("libSize<-",function(object,value){standardGeneric("libSize<-")})
setMethod("libSize", signature="MRexperiment",function(object) {
ls <- expSummary(object)$libSize
ls <- unlist(ls)
names(ls) <- sampleNames(object)
ls
})
#' Replace the library sizes in a MRexperiment object
#'
#' Function to replace the scaling factors, aka the library sizes, of
#' samples in a MRexperiment object.
#'
#' @name libSize<-
#' @docType methods
#' @aliases libSize<-,MRexperiment,numeric-method libSize<-
#' @param object a \code{MRexperiment} object
#' @param value vector of library sizes
#' @return vector library sizes
#' @author Joseph N. Paulson
#' @examples
#'
#' data(lungData)
#' head(libSize(lungData)<- rnorm(1))
#'
setReplaceMethod("libSize", signature=c(object="MRexperiment", value="numeric"),
function( object, value ) {
pData(object@expSummary$expSummary)$libSize <- value
validObject( object )
object
})
#' Class "fitZigResults" -- a formal class for storing results from a fitZig call
#'
#' This class contains all of the same information expected from a fitZig call,
#' but it is defined in the S4 style as opposed to being stored as a list.
#'
#' @slot call the call made to fitZig
#' @slot fit 'MLArrayLM' Limma object of the weighted fit
#' @slot countResiduals standardized residuals of the fit
#' @slot z matrix of the posterior probabilities. It is defined as $z_ij = pr(delta_ij=1 | data)$
#' @slot zUsed used in \code{\link{getZ}}
#' @slot eb output of eBayes, moderated t-statistics, moderated F-statistics, etc
#' @slot taxa vector of the taxa names
#' @slot counts the original count matrix input
#' @slot zeroMod the zero model matrix
#' @slot zeroCoef the zero model fitted results
#' @slot stillActive convergence
#' @slot stillActiveNLL nll at convergence
#' @slot dupcor correlation of duplicates
#'
#'
setClass("fitZigResults",
slots = c(fit = "list", countResiduals = "matrix", z = "matrix", zUsed = "ANY",
eb = "MArrayLM", zeroMod = "matrix", stillActive = "logical", stillActiveNLL = "numeric",
zeroCoef = "list", dupcor = "ANY", call = "call", taxa = "character", counts = "matrix"))
#' Class "fitFeatureModelResults" -- a formal class for storing results from a fitFeatureModel call
#'
#' This class contains all of the same information expected from a fitFeatureModel call,
#' but it is defined in the S4 style as opposed to being stored as a list.
#'
#' @slot call the call made to fitFeatureModel
#' @slot fitZeroLogNormal list of parameter estimates for the zero-inflated log normal model
#' @slot design model matrix
#' @slot taxa taxa names
#' @slot counts count matrix
#' @slot pvalues calculated p-values
#' @slot permuttedFits permutted z-score estimates under the null
#'
#'
setClass("fitFeatureModelResults",
slots = c(call = "call", fitZeroLogNormal = "list", design = "matrix", taxa = "character",
counts = "matrix", pvalues = "numeric", permuttedFits = "ANY"))
#' Create a MRexperiment object
#'
#' This function creates a MRexperiment object from a matrix or data frame of
#' count data.
#'
#' See \code{\link{MRexperiment-class}} and \code{eSet} (from the Biobase
#' package) for the meaning of the various slots.
#'
#' @param counts A matrix or data frame of count data. The count data is
#' representative of the number of reads annotated for a feature (be it gene,
#' OTU, species, etc). Rows should correspond to features and columns to
#' samples.
#' @param phenoData An AnnotatedDataFrame with pertinent sample information.
#' @param featureData An AnnotatedDataFrame with pertinent feature information.
#' @param libSize libSize, library size, is the total number of reads for a
#' particular sample.
#' @param normFactors normFactors, the normalization factors used in either the
#' model or as scaling factors of sample counts for each particular sample.
#' @return an object of class MRexperiment
#' @export
#' @author Joseph N Paulson
#' @examples
#'
#' cnts = matrix(abs(rnorm(1000)),nc=10)
#' obj <- newMRexperiment(cnts)
#'
newMRexperiment <- function(counts, phenoData=NULL, featureData=NULL,libSize=NULL, normFactors=NULL) {
counts= as.matrix(counts)
if( is.null( featureData ) ){
featureData <- annotatedDataFrameFrom(counts, byrow=TRUE)
}
if( is.null( phenoData ) ){
phenoData <- annotatedDataFrameFrom(counts, byrow=FALSE)
}
if( is.null( libSize ) ){
libSize <- as.matrix(colSums(counts))
rownames(libSize) = colnames(counts)
}
if( is.null( normFactors ) ){
normFactors <- as.matrix(rep( NA_real_, length(libSize) ))
rownames(normFactors) = rownames(libSize)
}
obj <-new("MRexperiment", assayData = assayDataNew("environment",counts=counts),phenoData = phenoData,featureData = featureData ,expSummary = new("list",expSummary=annotatedDataFrameFrom(counts,byrow=FALSE),cumNormStat=NULL))
obj@expSummary$expSummary$libSize = libSize;
obj@expSummary$expSummary$normFactors=normFactors;
validObject(obj)
obj
}
setValidity( "MRexperiment", function( object ) {
if( is.null(assayData(object)$counts))
return( "There are no counts!" )
# if( ncol(MRcounts(object)) != length(normFactors(object)))
# return( "Experiment summary got hacked!" )
# if( ncol(MRcounts(object)) != length(libSize(object)))
# return( "Experiment summary got hacked!" )
TRUE
} )
#' Accessor for the counts slot of a MRexperiment object
#'
#' The counts slot holds the raw count data representing (along the rows) the
#' number of reads annotated for a particular feature and (along the columns)
#' the sample.
#'
#'
#' @name MRcounts
#' @aliases MRcounts,MRexperiment-method MRcounts
#' @docType methods
#' @param obj a \code{MRexperiment} object.
#' @param norm logical indicating whether or not to return normalized counts.
#' @param log TRUE/FALSE whether or not to log2 transform scale.
#' @param sl The value to scale by (default=1000).
#' @return Normalized or raw counts
#' @author Joseph N. Paulson, jpaulson@@umiacs.umd.edu
#' @examples
#'
#' data(lungData)
#' head(MRcounts(lungData))
#'
MRcounts <- function(obj,norm=FALSE,log=FALSE,sl=1000) {
stopifnot( is( obj, "MRexperiment" ) )
if(!norm){
x=assayData(obj)[["counts"]]
}
else{
if(any(is.na(normFactors(obj)))){
x=cumNormMat(obj,sl=sl)
} else{
x=sweep(assayData(obj)[["counts"]],2,as.vector(unlist(normFactors(obj)))/sl,"/")
}
}
if(!log){
return(x)
} else{
return(log2(x+1))
}
}
#' Access the posterior probabilities that results from analysis
#'
#' Accessing the posterior probabilities following a run through
#' \code{\link{fitZig}}
#'
#'
#' @name posteriorProbs
#' @aliases posteriorProbs,MRexperiment-method posteriorProbs
#' @docType methods
#' @param obj a \code{MRexperiment} object.
#' @return Matrix of posterior probabilities
#' @author Joseph N. Paulson
#' @examples
#'
#' # This is a simple demonstration
#' data(lungData)
#' k = grep("Extraction.Control",pData(lungData)$SampleType)
#' lungTrim = lungData[,-k]
#' k = which(rowSums(MRcounts(lungTrim)>0)<30)
#' lungTrim = cumNorm(lungTrim)
#' lungTrim = lungTrim[-k,]
#' smokingStatus = pData(lungTrim)$SmokingStatus
#' mod = model.matrix(~smokingStatus)
#' # The maxit is not meant to be 1 -- this is for demonstration/speed
#' settings = zigControl(maxit=1,verbose=FALSE)
#' fit = fitZig(obj = lungTrim,mod=mod,control=settings)
#' head(posteriorProbs(lungTrim))
#'
posteriorProbs <- function( obj ) {
stopifnot( is( obj, "MRexperiment" ) )
assayData(obj)[["z"]]
}
#' Access MRexperiment object experiment data
#'
#' The expSummary vectors represent the column (sample specific) sums of
#' features, i.e. the total number of reads for a sample, libSize and also the
#' normalization factors, normFactor.
#'
#'
#' @name expSummary
#' @aliases expSummary,MRexperiment-method expSummary
#' @docType methods
#' @param obj a \code{MRexperiment} object.
#' @return Experiment summary table
#' @author Joseph N. Paulson, jpaulson@@umiacs.umd.edu
#' @examples
#'
#' data(mouseData)
#' expSummary(mouseData)
#'
expSummary<-function(obj){
stopifnot( is( obj, "MRexperiment" ) )
pData(obj@expSummary$expSummary)
}
#' Check if MRexperiment or matrix and return matrix
#'
#' Function to check if object is a MRexperiment
#' class or matrix
#'
#' @name returnAppropriateObj
#' @param obj a \code{MRexperiment} or \code{matrix} object
#' @param norm return a normalized \code{MRexperiment} matrix
#' @param log return a log transformed \code{MRexperiment} matrix
#' @param sl scaling value
#' @return Matrix
#' @examples
#'
#' data(lungData)
#' head(returnAppropriateObj(lungData,norm=FALSE,log=FALSE))
#'
returnAppropriateObj <- function(obj,norm,log,sl=1000) {
if (inherits(obj, "MRexperiment")) {
mat = MRcounts(obj,norm=norm,log=log,sl=sl)
} else if (inherits(obj, "matrix")) {
mat = obj
} else {
stop("Object needs to be either a MRexperiment object or matrix")
}
mat
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.