Nothing
###############################################################################
# ______ __
# / ____/_ __/ /_ ___
# / / / / / / __ \/ _ \
# / /___/ /_/ / /_/ / __/
# \____/\__,_/_.___/\___/
#
# MGDrivE: Mosquito Gene Drive Explorer
# Mendelian
# Héctor Sanchez, Jared Bennett, Sean Wu, John Marshall
# jared_bennett@berkeley.edu
# August 2017
#
###############################################################################
#' Inheritance Cube: Mendelian
#'
#' This function creates a Mendelian Inheritance Cube. It only handles simple,
#' alphabetic genotypes. \cr
#' The default is 3 alleles at 1 locus, this can be extended to however many
#' alleles one is interested in, but only at 1 locus.
#'
#' @param gtype Vector of genotypes, with the wild-type in the first position
#' @param eta Genotype-specific mating fitness
#' @param phi Genotype-specific sex ratio at emergence
#' @param omega Genotype-specific multiplicative modifier of adult mortality
#' @param xiF Genotype-specific female pupatory success
#' @param xiM Genotype-specific male pupatory success
#' @param s Genotype-specific fractional reduction(increase) in fertility
#'
#' @return Named list containing the inheritance cube, transition matrix, genotypes, wild-type allele,
#' and all genotype-specific parameters.
#' @export
cubeMendelian <- function(gtype = c("AA", "Aa", "aa"), eta = NULL, phi = NULL,
omega = NULL, xiF = NULL, xiM = NULL, s = NULL){
## safety check
if(!all(nchar(gtype[1])==nchar(gtype))){
stop("All the genotypes are not the same length")
}
## define matrices
## Matrix Dimensions Key: [femaleGenotype,maleGenotype,offspringGenotype]
size <- length(gtype) #because I use it several times
tMatrix <- array(data=0, dim=c(size, size, size), dimnames=list(gtype, gtype, gtype)) #transition matrix
testVec <- setNames(object = numeric(size), nm = gtype) #need later
## fill tMatrix with probabilities
for (i in gtype) # loop over female genotypes
{
for (j in gtype) # loop over male genotypes
{
male <- strsplit(j, split='')[[1]] # male genotype for this cross
female <- strsplit(i, split='')[[1]] # female genotype for this cross
offspring <- as.vector( outer(male, female, paste0, sep='') ) # offspring genotypes for this cross
# reorder all offspring alleles to match allele order in gtype
offspring <- vapply( strsplit(offspring, split=''),
function(x) {paste0(sort(x, method = 'radix'), collapse='')},
FUN.VALUE = character(1))
# count genotypes of offspring, order according to gtype
for (k in offspring)
{
testVec[k] <- testVec[k]+1
}
testVec[] <- testVec/sum(testVec) # normalize offspring frequencies to 1
tMatrix[i,j, ] <- testVec # store offspring frequences in transition matrix
testVec[] <- 0 # clear testVec
}
}
## initialize viability mask. No mother-specific death, so use basic mask
viabilityMask <- array(data = 1, dim = c(size,size,size),
dimnames = list(gtype, gtype, gtype))
## genotype-specific modifiers
modifiers = cubeModifiers(gtype, eta = eta, phi = phi, omega = omega,
xiF = xiF, xiM = xiM, s = s)
## put everything into a labeled list to return
return(list(
ih = tMatrix,
tau = viabilityMask,
genotypesID = gtype,
genotypesN = size,
wildType = gtype[[1]],
eta = modifiers$eta,
phi = modifiers$phi,
omega = modifiers$omega,
xiF = modifiers$xiF,
xiM = modifiers$xiM,
s = modifiers$s,
releaseType = gtype[size]
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.