R/pk.calc.simple.R

Defines functions pk.calc.totdose pk.calc.count_conc pk.calc.aucabove pk.calc.ceoi pk.calc.swing pk.calc.deg.fluc pk.calc.tlag pk.calc.ptr pk.calc.cstart pk.calc.ctrough pk.calc.cav pk.calc.vss pk.calc.vz pk.calc.mrt.md pk.calc.mrt.iv pk.calc.mrt pk.calc.f pk.calc.cl pk.calc.kel pk.calc.aucpext pk.calc.thalf.eff pk.calc.clast.obs pk.calc.tfirst pk.calc.tlast pk.calc.tmax pk.calc.cmin pk.calc.cmax adj.r.squared

Documented in adj.r.squared pk.calc.aucabove pk.calc.aucpext pk.calc.cav pk.calc.ceoi pk.calc.cl pk.calc.clast.obs pk.calc.cmax pk.calc.cmin pk.calc.count_conc pk.calc.cstart pk.calc.ctrough pk.calc.deg.fluc pk.calc.f pk.calc.kel pk.calc.mrt pk.calc.mrt.iv pk.calc.mrt.md pk.calc.ptr pk.calc.swing pk.calc.tfirst pk.calc.thalf.eff pk.calc.tlag pk.calc.tlast pk.calc.tmax pk.calc.totdose pk.calc.vss pk.calc.vz

# Calculate the simple parameters for PK.

#' Calculate the adjusted r-squared value
#'
#' @param r.sq The r-squared value
#' @param n The number of points
#' @return The numeric adjusted r-squared value
#' @export
adj.r.squared <- function(r.sq, n) {
  if (n <= 2) {
    rlang::warn(
      message = "n must be > 2 for adj.r.squared",
      class = "pknca_adjr2_2points"
    )
    structure(NA_real_, exclude="n must be > 2")
  } else {
    1-(1-r.sq)*(n-1)/(n-2)
  }
}

#' Determine maximum observed PK concentration
#'
#' @inheritParams assert_conc_time
#' @param check Run [assert_conc()]?
#' @return a number for the maximum concentration or NA if all concentrations
#'   are missing
#' @family NCA parameters for concentrations during the intervals
#' @export
pk.calc.cmax <- function(conc, check=TRUE) {
  if (check) {
    assert_conc(conc = conc)
  }
  if (length(conc) == 0 | all(is.na(conc))) {
    NA
  } else {
    max(conc, na.rm=TRUE)
  }
}
# Add the column to the interval specification
add.interval.col("cmax",
                 FUN="pk.calc.cmax",
                 values=c(FALSE, TRUE),
                 unit_type="conc",
                 pretty_name="Cmax",
                 desc="Maximum observed concentration",
                 depends=NULL)
PKNCA.set.summary(
  name="cmax",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' @describeIn pk.calc.cmax Determine the minimum observed PK
#'   concentration
#' @family NCA parameters for concentrations during the intervals
#' @export
pk.calc.cmin <- function(conc, check=TRUE) {
  if (check) {
    assert_conc(conc=conc)
  }
  if (length(conc) == 0 | all(is.na(conc))) {
    NA
  } else {
    min(conc, na.rm=TRUE)
  }
}
# Add the column to the interval specification
add.interval.col("cmin",
                 FUN="pk.calc.cmin",
                 values=c(FALSE, TRUE),
                 unit_type="conc",
                 pretty_name="Cmin",
                 desc="Minimum observed concentration",
                 depends=NULL)
PKNCA.set.summary(
  name="cmin",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Determine time of maximum observed PK concentration
#'
#' Input restrictions are:
#' \enumerate{
#'   \item the `conc` and `time` must be the same length,
#'   \item the `time` may have no NAs,
#' }
#' `NA` will be returned if:
#' \enumerate{
#'   \item the length of `conc` and `time` is 0
#'   \item all `conc` is 0 or `NA`
#' }
#'
#' @inheritParams assert_conc_time
#' @inheritParams PKNCA.choose.option
#' @param first.tmax If there is more than time that matches the maximum
#'   concentration, should the first be considered as Tmax?  If not, then the
#'   last is considered Tmax.
#' @param check Run [assert_conc_time()]?
#' @returns The time of the maximum concentration
#' @export
pk.calc.tmax <- function(conc, time,
                         options=list(),
                         first.tmax=NULL,
                         check=TRUE) {
  first.tmax <- PKNCA.choose.option(name="first.tmax", value=first.tmax, options=options)
  if (check) {
    assert_conc_time(conc = conc, time = time)
  }
  if (length(conc) == 0 | all(conc %in% c(NA, 0))) {
    NA
  } else {
    ret <- time[conc %in% pk.calc.cmax(conc, check=FALSE)]
    if (first.tmax) {
      ret[1]
    } else {
      ret[length(ret)]
    }
  }
}
# Add the column to the interval specification
add.interval.col("tmax",
                 FUN="pk.calc.tmax",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="Tmax",
                 desc="Time of the maximum observed concentration",
                 depends=NULL)
PKNCA.set.summary(
  name="tmax",
  description="median and range",
  point=business.median,
  spread=business.range
)

#' Determine time of last observed concentration above the limit of
#' quantification.
#'
#' `NA` will be returned if all `conc` are `NA` or 0.
#'
#' @inheritParams assert_conc_time
#' @param check Run [assert_conc_time()]?
#' @returns The time of the last observed concentration measurement
#' @export
pk.calc.tlast <- function(conc, time, check=TRUE) {
  if (check) {
    assert_conc_time(conc = conc, time = time)
  }
  if (all(conc %in% c(NA, 0))) {
    NA
  } else {
    max(time[!(conc %in% c(NA, 0))])
  }
}
# Add the column to the interval specification
add.interval.col("tlast",
                 FUN="pk.calc.tlast",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="Tlast",
                 desc="Time of the last concentration observed above the limit of quantification",
                 depends=NULL)
PKNCA.set.summary(
  name="tlast",
  description="median and range",
  point=business.median,
  spread=business.range
)

#' @describeIn pk.calc.tlast Determine the first concentration above
#'   the limit of quantification.
#' @export
pk.calc.tfirst <- function(conc, time, check=TRUE) {
  if (check) {
    assert_conc_time(conc, time)
  }
  if (all(conc %in% c(NA, 0))) {
    NA
  } else {
    min(time[!(conc %in% c(NA, 0))])
  }
}
# Add the column to the interval specification
add.interval.col("tfirst",
                 FUN="pk.calc.tfirst",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="Tfirst",
                 desc="Time of the first concentration above the limit of quantification",
                 depends=NULL)
PKNCA.set.summary(
  name="tfirst",
  description="median and range",
  point=business.median,
  spread=business.range
)

#' Determine the last observed concentration above the limit of quantification
#' (LOQ).
#'
#' If all concentrations are missing, `NA_real_` is returned.  If all
#' concentrations are zero (below the limit of quantification) or missing, zero
#' is returned.  If Tlast is NA (due to no non-missing above LOQ measurements),
#' this will return `NA_real_`.
#'
#' @inheritParams assert_conc_time
#' @param check Run [assert_conc_time()]?
#' @returns The last observed concentration above the LOQ
#' @family NCA parameters for concentrations during the intervals
#' @export
pk.calc.clast.obs <- function(conc, time, check=TRUE) {
  if (check) {
    assert_conc_time(conc = conc, time = time)
  }
  if (all(is.na(conc))) {
    NA_real_
  } else if (all(conc %in% c(0, NA))) {
    0
  } else {
    tlast <- pk.calc.tlast(conc, time, check = FALSE)
    if (!is.na(tlast)) {
      conc[time %in% tlast]
    } else {
      NA_real_
    }
  }
}
# Add the column to the interval specification
add.interval.col("clast.obs",
                 FUN="pk.calc.clast.obs",
                 values=c(FALSE, TRUE),
                 unit_type="conc",
                 pretty_name="Clast",
                 desc="The last concentration observed above the limit of quantification",
                 depends=NULL)
PKNCA.set.summary(
  name="clast.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Calculate the effective half-life
#'
#' @details thalf.eff is `log(2)*mrt`.
#'
#' @param mrt the mean residence time to infinity
#' @return the numeric value of the effective half-life
#' @export
pk.calc.thalf.eff <- function(mrt) {
  log(2)*mrt
}
# Add the columns to the interval specification
add.interval.col("thalf.eff.obs",
                 FUN="pk.calc.thalf.eff",
                 values=c(FALSE, TRUE),
                 desc="The effective half-life (as determined from the MRTobs)",
                 unit_type="time",
                 pretty_name="Effective half-life (based on MRT,obs)",
                 formalsmap=list(mrt="mrt.obs"),
                 depends="mrt.obs")
PKNCA.set.summary(
  name="thalf.eff.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("thalf.eff.pred",
                 FUN="pk.calc.thalf.eff",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="Effective half-life (based on MRT,pred)",
                 desc="The effective half-life (as determined from the MRTpred)",
                 formalsmap=list(mrt="mrt.pred"),
                 depends="mrt.pred")
PKNCA.set.summary(
  name="thalf.eff.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("thalf.eff.last",
                 FUN="pk.calc.thalf.eff",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="Effective half-life (based on MRT,last)",
                 desc="The effective half-life (as determined from the MRTlast)",
                 formalsmap=list(mrt="mrt.last"),
                 depends="mrt.last")
PKNCA.set.summary(
  name="thalf.eff.last",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("thalf.eff.iv.obs",
                 FUN="pk.calc.thalf.eff",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="Effective half-life (for IV dosing, based on MRT,obs)",
                 desc="The effective half-life (as determined from the intravenous MRTobs)",
                 formalsmap=list(mrt="mrt.iv.obs"),
                 depends="mrt.iv.obs")
PKNCA.set.summary(
  name="thalf.eff.iv.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("thalf.eff.iv.pred",
                 FUN="pk.calc.thalf.eff",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="Effective half-life (for IV dosing, based on MRT,pred)",
                 desc="The effective half-life (as determined from the intravenous MRTpred)",
                 formalsmap=list(mrt="mrt.iv.pred"),
                 depends="mrt.iv.pred")
PKNCA.set.summary(
  name="thalf.eff.iv.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("thalf.eff.iv.last",
                 FUN="pk.calc.thalf.eff",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="Effective half-life (for IV dosing, based on MRTlast)",
                 desc="The effective half-life (as determined from the intravenous MRTlast)",
                 formalsmap=list(mrt="mrt.iv.last"),
                 depends="mrt.iv.last")
PKNCA.set.summary(
  name="thalf.eff.iv.last",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Calculate the AUC percent extrapolated
#'
#' @details aucpext is `100*(1-auclast/aucinf)`.
#'
#' @param auclast the area under the curve from time 0 to the last measurement
#'   above the limit of quantification
#' @param aucinf the area under the curve from time 0 to infinity
#' @returns The numeric value of the AUC percent extrapolated or `NA_real_` if
#'   any of the following are true `is.na(aucinf)`, `is.na(auclast)`,
#'   `aucinf <= 0`, or `auclast <= 0`.
#' @export
pk.calc.aucpext <- function(auclast, aucinf) {
  scalar_auclast <- length(auclast) == 1
  scalar_aucinf <- length(aucinf) == 1
  if (scalar_auclast | scalar_aucinf) {
    # no length checking needs to occur
  } else if ((!scalar_auclast & !scalar_aucinf) &
             length(auclast) != length(aucinf)) {
    stop("auclast and aucinf must either be a scalar or the same length.")
  }
  ret <- rep(NA_real_, max(c(length(auclast), length(aucinf))))
  mask_na <-
    is.na(auclast) |
    is.na(aucinf)
  mask_negative <-
    !mask_na &
    (aucinf <= 0 |
       auclast <= 0)
  mask_greater <-
    !mask_na &
    (auclast >= aucinf)
  mask_calc <- !mask_na & !(aucinf %in% 0)
  if (any(mask_greater))
    rlang::warn(
      message = "aucpext is typically only calculated when aucinf is greater than auclast.",
      class = "pknca_aucpext_aucinf_le_auclast"
    )
  if (any(mask_negative))
    rlang::warn(
      message = "aucpext is typically only calculated when both aucinf and auclast are positive.",
      class = "pknca_aucpext_aucinf_auclast_positive"
    )
  ret[mask_calc] <-
    100*(1-auclast[mask_calc]/aucinf[mask_calc])
  ret
}

# Add the columns to the interval specification
add.interval.col("aucpext.obs",
                 FUN="pk.calc.aucpext",
                 values=c(FALSE, TRUE),
                 unit_type="%",
                 pretty_name="AUCpext (based on AUCinf,obs)",
                 desc="Percent of the AUCinf that is extrapolated after Tlast calculated from the observed Clast",
                 formalsmap=list(aucinf="aucinf.obs"),
                 depends=c("auclast", "aucinf.obs"))
PKNCA.set.summary(
  name="aucpext.obs",
  description="arithmetic mean and standard deviation",
  point=business.mean,
  spread=business.sd
)
add.interval.col("aucpext.pred",
                 FUN="pk.calc.aucpext",
                 values=c(FALSE, TRUE),
                 unit_type="%",
                 pretty_name="AUCpext (based on AUCinf,pred)",
                 desc="Percent of the AUCinf that is extrapolated after Tlast calculated from the predicted Clast",
                 formalsmap=list(aucinf="aucinf.pred"),
                 depends=c("auclast", "aucinf.pred"))
PKNCA.set.summary(
  name="aucpext.pred",
  description="arithmetic mean and standard deviation",
  point=business.mean,
  spread=business.sd
)

#' Calculate the elimination rate (Kel)
#'
#' @param kel is `1/mrt`, not to be confused with lambda.z.
#'
#' @param mrt the mean residence time
#' @returns the numeric value of the elimination rate
#' @export
pk.calc.kel <- function(mrt) {
  1/mrt
}
# Add the columns to the interval specification
add.interval.col("kel.obs",
                 FUN="pk.calc.kel",
                 values=c(FALSE, TRUE),
                 unit_type="inverse_time",
                 pretty_name="Kel (based on AUCinf,obs)",
                 desc="Elimination rate (as calculated from the MRT with observed Clast)",
                 formalsmap=list(mrt="mrt.obs"),
                 depends="mrt.obs")
PKNCA.set.summary(
  name="kel.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("kel.pred",
                 FUN="pk.calc.kel",
                 values=c(FALSE, TRUE),
                 unit_type="inverse_time",
                 pretty_name="Kel (based on AUCinf,pred)",
                 desc="Elimination rate (as calculated from the MRT with predicted Clast)",
                 formalsmap=list(mrt="mrt.pred"),
                 depends="mrt.pred")
PKNCA.set.summary(
  name="kel.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("kel.last",
                 FUN="pk.calc.kel",
                 values=c(FALSE, TRUE),
                 unit_type="inverse_time",
                 pretty_name="Kel (based on AUClast)",
                 desc="Elimination rate (as calculated from the MRT using AUClast)",
                 formalsmap=list(mrt="mrt.last"),
                 depends="mrt.last")
PKNCA.set.summary(
  name="kel.last",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("kel.iv.obs",
                 FUN="pk.calc.kel",
                 values=c(FALSE, TRUE),
                 unit_type="inverse_time",
                 pretty_name="Kel (for IV dosing, based on AUCinf,obs)",
                 desc="Elimination rate (as calculated from the intravenous MRTobs)",
                 formalsmap=list(mrt="mrt.iv.obs"),
                 depends="mrt.iv.obs")
PKNCA.set.summary(
  name="kel.iv.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("kel.iv.pred",
                 FUN="pk.calc.kel",
                 values=c(FALSE, TRUE),
                 unit_type="inverse_time",
                 pretty_name="Kel (for IV dosing, based on AUCinf,pred)",
                 desc="Elimination rate (as calculated from the intravenous MRTpred)",
                 formalsmap=list(mrt="mrt.iv.pred"),
                 depends="mrt.iv.pred")
PKNCA.set.summary(
  name="kel.iv.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("kel.iv.last",
                 FUN="pk.calc.kel",
                 values=c(FALSE, TRUE),
                 unit_type="inverse_time",
                 pretty_name="Kel (for IV dosing, based on AUClast)",
                 desc="Elimination rate (as calculated from the intravenous MRTlast)",
                 formalsmap=list(mrt="mrt.iv.last"),
                 depends="mrt.iv.last")
PKNCA.set.summary(
  name="kel.iv.last",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Calculate the (observed oral) clearance
#'
#' @details cl is `dose/auc`.
#'
#' @param dose the dose administered
#' @param auc The area under the concentration-time curve.
#' @returns the numeric value of the total (CL) or observed oral clearance
#'   (CL/F)
#' @details If `dose` is the same length as the other inputs, then the output
#'   will be the same length as all of the inputs; the function assumes that you
#'   are calculating for multiple intervals simultaneously.  If the inputs other
#'   than `dose` are scalars and `dose` is a vector, then the function assumes
#'   multiple doses were given in a single interval, and the sum of the `dose`s
#'   will be used for the calculation.
#' @references Gabrielsson J, Weiner D. "Section 2.5.1 Derivation of clearance."
#'   Pharmacokinetic & Pharmacodynamic Data Analysis: Concepts and Applications,
#'   4th Edition.  Stockholm, Sweden: Swedish Pharmaceutical Press, 2000. 86-7.
#' @export
pk.calc.cl <- function(dose, auc) {
  if (length(auc) == 1) {
    dose <- sum(dose)
  }
  ret <- dose/auc
  mask_zero <- !is.na(auc) & (auc <= 0)
  if (any(mask_zero)) {
    ret[mask_zero] <- NA_real_
  }
  ret
}

# Add the columns to the interval specification
add.interval.col("cl.last",
                 FUN="pk.calc.cl",
                 values=c(FALSE, TRUE),
                 unit_type="clearance",
                 pretty_name="CL (based on AUClast)",
                 desc="Clearance or observed oral clearance calculated to Clast",
                 formalsmap=list(auc="auclast"),
                 depends="auclast")
PKNCA.set.summary(
  name="cl.last",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("cl.all",
                 FUN="pk.calc.cl",
                 values=c(FALSE, TRUE),
                 unit_type="clearance",
                 pretty_name="CL (based on AUCall)",
                 desc="Clearance or observed oral clearance calculated with AUCall",
                 formalsmap=list(auc="aucall"),
                 depends="aucall")
PKNCA.set.summary(
  name="cl.all",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("cl.obs",
                 FUN="pk.calc.cl",
                 values=c(FALSE, TRUE),
                 unit_type="clearance",
                 pretty_name="CL (based on AUCinf,obs)",
                 desc="Clearance or observed oral clearance calculated with observed Clast",
                 formalsmap=list(auc="aucinf.obs"),
                 depends="aucinf.obs")
PKNCA.set.summary(
  name="cl.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("cl.pred",
                 FUN="pk.calc.cl",
                 values=c(FALSE, TRUE),
                 unit_type="clearance",
                 pretty_name="CL (based on AUCinf,pred)",
                 desc="Clearance or observed oral clearance calculated with predicted Clast",
                 formalsmap=list(auc="aucinf.pred"),
                 depends="aucinf.pred")
PKNCA.set.summary(
  name="cl.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Calculate the absolute (or relative) bioavailability
#'
#' @details f is `(auc2/dose2)/(auc1/dose1)`.
#'
#' @param dose1 The dose administered in route or method 1
#' @param dose2 The dose administered in route or method 2
#' @param auc1 The AUC from 0 to infinity or 0 to tau administered in route or
#'   method 1
#' @param auc2 The AUC from 0 to infinity or 0 to tau administered in route or
#'   method 2
#' @export
pk.calc.f <- function(dose1, auc1, dose2, auc2) {
  ret <- (auc2/dose2)/(auc1/dose1)
  mask_zero <-
    is.na(auc1)  | (auc1 <= 0) |
    is.na(dose2) | (dose2 <= 0) |
    is.na(dose1) | (dose1 <= 0)
  if (any(mask_zero)) {
    ret[mask_zero] <- NA_real_
  }
  ret
}
add.interval.col("f",
                 FUN="pk.calc.f",
                 values=c(FALSE, TRUE),
                 unit_type="fraction",
                 pretty_name="Bioavailability",
                 desc="Bioavailability or relative bioavailability",
                 depends=NULL)
PKNCA.set.summary(
  name="f",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Calculate the mean residence time (MRT) for single-dose data or linear
#' multiple-dose data.
#'
#' @details mrt is `aumc/auc - duration.dose/2` where `duration.dose =
#'   0` for oral administration.
#'
#' @param auc the AUC from 0 to infinity or 0 to tau
#' @param aumc the AUMC from 0 to infinity or 0 to tau
#' @param duration.dose The duration of the dose (usually an infusion duration
#'   for an IV infusion)
#' @returns the numeric value of the mean residence time
#' @seealso [pk.calc.mrt.md()]
#' @export
pk.calc.mrt <- function(auc, aumc) {
  pk.calc.mrt.iv(auc, aumc, duration.dose=0)
}
# Add the columns to the interval specification
add.interval.col("mrt.obs",
                 FUN="pk.calc.mrt",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="MRT (based on AUCinf,obs)",
                 desc="The mean residence time to infinity using observed Clast",
                 formalsmap=list(auc="aucinf.obs", aumc="aumcinf.obs"),
                 depends=c("aucinf.obs", "aumcinf.obs"))
PKNCA.set.summary(
  name="mrt.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("mrt.pred",
                 FUN="pk.calc.mrt",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="MRT (based on AUCinf,pred)",
                 desc="The mean residence time to infinity using predicted Clast",
                 formalsmap=list(auc="aucinf.pred", aumc="aumcinf.pred"),
                 depends=c("aucinf.pred", "aumcinf.pred"))
PKNCA.set.summary(
  name="mrt.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("mrt.last",
                 FUN="pk.calc.mrt",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="MRT (based on AUClast)",
                 desc="The mean residence time to the last observed concentration above the LOQ",
                 formalsmap=list(auc="auclast", aumc="aumclast"),
                 depends=c("auclast", "aumclast"))
PKNCA.set.summary(
  name="mrt.last",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' @describeIn pk.calc.mrt MRT for an IV infusion
#' @export
pk.calc.mrt.iv <- function(auc, aumc, duration.dose) {
  ret <- aumc/auc - duration.dose/2
  mask_zero <- is.na(auc) | auc <= 0
  if (any(mask_zero)) {
    ret[mask_zero] <- NA_real_
  }
  ret
}
# Add the columns to the interval specification
add.interval.col("mrt.iv.obs",
                 FUN="pk.calc.mrt.iv",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="MRT (for IV dosing, based on AUCinf,obs)",
                 desc="The mean residence time to infinity using observed Clast correcting for dosing duration",
                 formalsmap=list(auc="aucinf.obs", aumc="aumcinf.obs"),
                 depends=c("aucinf.obs", "aumcinf.obs"))
PKNCA.set.summary(
  name="mrt.iv.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("mrt.iv.pred",
                 FUN="pk.calc.mrt.iv",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="MRT (for IV dosing, based on AUCinf,pred)",
                 desc="The mean residence time to infinity using predicted Clast correcting for dosing duration",
                 formalsmap=list(auc="aucinf.pred", aumc="aumcinf.pred"),
                 depends=c("aucinf.pred", "aumcinf.pred"))
PKNCA.set.summary(
  name="mrt.iv.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("mrt.iv.last",
                 FUN="pk.calc.mrt.iv",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="MRT (for IV dosing, based on AUClast)",
                 desc="The mean residence time to the last observed concentration above the LOQ correcting for dosing duration",
                 formalsmap=list(auc="auclast", aumc="aumclast"),
                 depends=c("auclast", "aumclast"))
PKNCA.set.summary(
  name="mrt.iv.last",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Calculate the mean residence time (MRT) for multiple-dose data with nonlinear
#' kinetics.
#'
#' @details mrt.md is `aumctau/auctau + tau*(aucinf-auctau)/auctau` and should
#'   only be used for multiple dosing with equal intervals between doses.
#'
#' @param auctau the AUC from time 0 to the end of the dosing interval (tau).
#' @param aumctau the AUMC from time 0 to the end of the dosing interval (tau).
#' @param aucinf the AUC from time 0 to infinity (typically using single-dose
#'   data)
#' @inheritParams assert_dosetau
#' @details Note that if `aucinf == auctau` (as would be the assumption with
#'   linear kinetics), the equation becomes the same as the single-dose MRT.
#' @seealso [pk.calc.mrt()]
#' @export
pk.calc.mrt.md <- function(auctau, aumctau, aucinf, tau) {
  ret <- aumctau/auctau + tau*(aucinf-auctau)/auctau
  mask_zero <- is.na(auctau) | auctau <= 0
  if (any(mask_zero)) {
    ret[mask_zero] <- NA_real_
  }
  ret
}
add.interval.col("mrt.md.obs",
                 FUN="pk.calc.mrt.md",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="MRT (for multiple dosing, based on AUCinf,obs)",
                 desc="The mean residence time with multiple dosing and nonlinear kinetics using observed Clast",
                 formalsmap=list(auctau="auclast", aumctau="aumclast", aucinf="aucinf.obs"),
                 depends=c("auclast", "aumclast", "aucinf.obs"))
PKNCA.set.summary(
  name="mrt.md.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("mrt.md.pred",
                 FUN="pk.calc.mrt.md",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="MRT (for multiple dosing, based on AUCinf,pred)",
                 desc="The mean residence time with multiple dosing and nonlinear kinetics using predicted Clast",
                 formalsmap=list(auctau="auclast", aumctau="aumclast", aucinf="aucinf.pred"),
                 depends=c("auclast", "aumclast", "aucinf.pred"))
PKNCA.set.summary(
  name="mrt.md.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Calculate the terminal volume of distribution (Vz)
#'
#' @details vz is `cl/lambda.z`.
#'
#' @inheritParams assert_lambdaz
#' @param cl the clearance (or apparent observed clearance)
#' @export
pk.calc.vz <- function(cl, lambda.z) {
  assert_lambdaz(lambda.z)
  # Ensure that cl is either a scalar or the same length as AUC
  # (more complex repeating patterns while valid for general R are
  # likely errors here).
  if (!(length(cl) %in% c(1, length(lambda.z))) |
      !(length(lambda.z) %in% c(1, length(cl))))
    stop("'cl' and 'lambda.z' must be the same length")
  cl/lambda.z
}
# Add the columns to the interval specification
add.interval.col("vz.obs",
                 FUN="pk.calc.vz",
                 values=c(FALSE, TRUE),
                 unit_type="volume",
                 pretty_name="Vz (based on AUCinf,obs)",
                 desc="The terminal volume of distribution using observed Clast",
                 formalsmap=list(cl="cl.obs"),
                 depends=c("cl.obs", "lambda.z"))
PKNCA.set.summary(
  name="vz.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("vz.pred",
                 FUN="pk.calc.vz",
                 values=c(FALSE, TRUE),
                 unit_type="volume",
                 pretty_name="Vz (based on AUCinf,pred)",
                 desc="The terminal volume of distribution using predicted Clast",
                 formalsmap=list(cl="cl.pred"),
                 depends=c("cl.pred", "lambda.z"))
PKNCA.set.summary(
  name="vz.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Calculate the steady-state volume of distribution (Vss)
#'
#' @details vss is `cl*mrt`.
#' @param cl the clearance
#' @param mrt the mean residence time
#' @return the volume of distribution at steady-state
#' @export
pk.calc.vss <- function(cl, mrt) {
  cl*mrt
}
# Add the columns to the interval specification
add.interval.col("vss.obs",
                 FUN="pk.calc.vss",
                 values=c(FALSE, TRUE),
                 unit_type="volume",
                 pretty_name="Vss (based on AUCinf,obs)",
                 desc="The steady-state volume of distribution using observed Clast",
                 formalsmap=list(cl="cl.obs", mrt="mrt.obs"),
                 depends=c("cl.obs", "mrt.obs"))
PKNCA.set.summary(
  name="vss.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("vss.pred",
                 FUN="pk.calc.vss",
                 values=c(FALSE, TRUE),
                 unit_type="volume",
                 pretty_name="Vss (based on AUCinf,pred)",
                 desc="The steady-state volume of distribution using predicted Clast",
                 formalsmap=list(cl="cl.pred", mrt="mrt.pred"),
                 depends=c("cl.pred", "mrt.pred"))
PKNCA.set.summary(
  name="vss.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("vss.last",
                 FUN="pk.calc.vss",
                 values=c(FALSE, TRUE),
                 unit_type="volume",
                 pretty_name="Vss (based on AUClast)",
                 desc="The steady-state volume of distribution calculating through Tlast",
                 formalsmap=list(cl="cl.last", mrt="mrt.last"),
                 depends=c("cl.last", "mrt.last"))
PKNCA.set.summary(
  name="vss.last",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("vss.iv.obs",
                 FUN="pk.calc.vss",
                 values=c(FALSE, TRUE),
                 unit_type="volume",
                 pretty_name="Vss (for IV dosing, based on AUCinf,obs)",
                 desc="The steady-state volume of distribution with intravenous infusion using observed Clast",
                 formalsmap=list(cl="cl.obs", mrt="mrt.iv.obs"),
                 depends=c("cl.obs", "mrt.iv.obs"))
PKNCA.set.summary(
  name="vss.iv.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("vss.iv.pred",
                 FUN="pk.calc.vss",
                 values=c(FALSE, TRUE),
                 unit_type="volume",
                 pretty_name="Vss (for IV dosing, based on AUCinf,pred)",
                 desc="The steady-state volume of distribution with intravenous infusion using predicted Clast",
                 formalsmap=list(cl="cl.pred", mrt="mrt.iv.pred"),
                 depends=c("cl.pred", "mrt.iv.pred"))
PKNCA.set.summary(
  name="vss.iv.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("vss.iv.last",
                 FUN="pk.calc.vss",
                 values=c(FALSE, TRUE),
                 unit_type="volume",
                 pretty_name="Vss (for IV dosing, based on AUClast)",
                 desc="The steady-state volume of distribution with intravenous infusion calculating through Tlast",
                 formalsmap=list(cl="cl.last", mrt="mrt.iv.last"),
                 depends=c("cl.last", "mrt.iv.last"))
PKNCA.set.summary(
  name="vss.iv.last",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

add.interval.col("vss.md.obs",
                 FUN="pk.calc.vss",
                 values=c(FALSE, TRUE),
                 unit_type="volume",
                 pretty_name="Vss (for multiple-dose, based on Clast,obs)",
                 desc="The steady-state volume of distribution for nonlinear multiple-dose data using observed Clast",
                 formalsmap=list(cl="cl.last", mrt="mrt.md.obs"),
                 depends=c("cl.last", "mrt.md.obs"))
PKNCA.set.summary(
  name="vss.md.obs",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col("vss.md.pred",
                 FUN="pk.calc.vss",
                 values=c(FALSE, TRUE),
                 unit_type="volume",
                 pretty_name="Vss (for multiple-dose, based on Clast,pred)",
                 desc="The steady-state volume of distribution for nonlinear multiple-dose data using predicted Clast",
                 formalsmap=list(cl="cl.last", mrt="mrt.md.pred"),
                 depends=c("cl.last", "mrt.md.pred"))
PKNCA.set.summary(
  name="vss.md.pred",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Calculate the average concentration during an interval.
#'
#' @details cav is `auc/(end-start)`.
#'
#' @param auc The area under the curve during the interval
#' @inheritParams assert_intervaltime_single
#' @returns The Cav (average concentration during the interval)
#' @export
pk.calc.cav <- function(auc, start, end) {
  ret <- auc/(end-start)
  mask_zero <- is.na(end) | is.na(start) | end == start
  if (any(mask_zero)) {
    ret[mask_zero] <- NA_real_
  }
  ret
}
add.interval.col(
  "cav",
  FUN = "pk.calc.cav",
  values = c(FALSE, TRUE),
  unit_type = "conc",
  pretty_name = "Cav",
  desc = "The average concentration during an interval (calculated with AUClast)",
  depends = "auclast",
  formalsmap = list(auc = "auclast")
)
add.interval.col(
  "cav.int.last",
  FUN = "pk.calc.cav",
  values = c(FALSE, TRUE),
  unit_type = "conc",
  pretty_name = "Cav",
  desc = "The average concentration during an interval (calculated with AUCint.last)",
  depends = "aucint.last",
  formalsmap = list(auc = "aucint.last"),
)
add.interval.col(
  "cav.int.all",
  FUN = "pk.calc.cav",
  values = c(FALSE, TRUE),
  unit_type = "conc",
  pretty_name = "Cav",
  desc = "The average concentration during an interval (calculated with AUCint.all)",
  depends = "aucint.all",
  formalsmap = list(auc = "aucint.all"),
)
add.interval.col(
  "cav.int.inf.obs",
  FUN = "pk.calc.cav",
  values = c(FALSE, TRUE),
  unit_type = "conc",
  pretty_name = "Cav",
  desc = "The average concentration during an interval (calculated with AUCint.inf.obs)",
  depends = "aucint.inf.obs",
  formalsmap = list(auc = "aucint.inf.obs"),
)
add.interval.col(
  "cav.int.inf.pred",
  FUN = "pk.calc.cav",
  values = c(FALSE, TRUE),
  unit_type = "conc",
  pretty_name = "Cav",
  desc = "The average concentration during an interval (calculated with AUCint.inf.pred)",
  depends = "aucint.inf.pred",
  formalsmap = list(auc = "aucint.inf.pred"),
)

PKNCA.set.summary(
  name = c("cav", "cav.int.last", "cav.int.all", "cav.int.inf.obs", "cav.int.inf.pred"),
  description = "geometric mean and geometric coefficient of variation",
  point = business.geomean,
  spread = business.geocv
)

#' Determine the trough (end of interval) concentration
#'
#' @inheritParams assert_conc_time
#' @inheritParams assert_intervaltime_single
#' @returns The concentration when `time == end`.  If none match, then `NA`
#' @family NCA parameters for concentrations during the intervals
#' @export
pk.calc.ctrough <- function(conc, time, end) {
  assert_conc_time(conc = conc, time = time)
  mask_end <- time %in% end
  if (sum(mask_end) == 1) {
    conc[mask_end]
  } else if (sum(mask_end) == 0) {
    NA_real_
  } else {
    # This should be impossible as assert_conc_time should catch
    # duplicates.
    stop("More than one time matches the starting time.  Please report this as a bug with a reproducible example.") # nocov
  }
}
add.interval.col("ctrough",
                 FUN="pk.calc.ctrough",
                 values=c(FALSE, TRUE),
                 unit_type="conc",
                 pretty_name="Ctrough",
                 desc="The trough (end of interval) concentration",
                 depends=NULL)
PKNCA.set.summary(
  name="ctrough",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Determine the concentration at the beginning of the interval
#'
#' @inheritParams assert_conc_time
#' @inheritParams assert_intervaltime_single
#' @return The concentration when `time == end`.  If none match, then `NA`
#' @family NCA parameters for concentrations during the intervals
#' @export
pk.calc.cstart <- function(conc, time, start) {
  assert_conc_time(conc = conc, time = time)
  mask_start <- time %in% start
  if (sum(mask_start) == 1) {
    conc[mask_start]
  } else if (sum(mask_start) == 0) {
    NA_real_
  } else {
    # This should be impossible as assert_conc_time should catch
    # duplicates.
    stop("More than one time matches the starting time.  Please report this as a bug with a reproducible example.") # nocov
  }
}
add.interval.col("cstart",
                 FUN="pk.calc.cstart",
                 values=c(FALSE, TRUE),
                 unit_type="conc",
                 pretty_name="Cstart",
                 desc="The predose concentration",
                 depends=NULL)
PKNCA.set.summary(
  name="cstart",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Determine the peak-to-trough ratio
#'
#' @details ptr is `cmax/ctrough`.
#'
#' @param cmax The maximum observed concentration
#' @param ctrough The last concentration in an interval
#' @return The ratio of cmax to ctrough (if ctrough == 0, NA)
#' @export
pk.calc.ptr <- function(cmax, ctrough) {
  ret <- cmax/ctrough
  ret[ctrough %in% 0] <- NA_real_
  ret
}
add.interval.col("ptr",
                 FUN="pk.calc.ptr",
                 values=c(FALSE, TRUE),
                 unit_type="fraction",
                 pretty_name="Peak-to-trough ratio",
                 desc="Peak-to-Trough ratio (fraction)",
                 depends=c("cmax", "ctrough"))
PKNCA.set.summary(
  name="ptr",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Determine the observed lag time (time before the first
#' concentration above the limit of quantification or above the first
#' concentration in the interval)
#'
#' @inheritParams assert_conc_time
#' @returns The time associated with the first increasing concentration
#' @export
pk.calc.tlag <- function(conc, time) {
  assert_conc_time(conc = conc, time = time)
  mask.increase <- c(conc[-1] > conc[-length(conc)], FALSE)
  if (any(mask.increase)) {
    time[mask.increase][1]
  } else {
    NA_real_
  }
}
add.interval.col("tlag",
                 FUN="pk.calc.tlag",
                 values=c(FALSE, TRUE),
                 unit_type="time",
                 pretty_name="Tlag",
                 desc="Lag time",
                 depends=NULL)
PKNCA.set.summary(
  name="tlag",
  description="median and range",
  point=business.median,
  spread=business.range
)

#' Determine the degree of fluctuation
#'
#' @details deg.fluc is `100*(cmax - cmin)/cav`.
#'
#' @param cmax The maximum observed concentration
#' @param cmin The minimum observed concentration
#' @param cav The average concentration in the interval
#' @returns The degree of fluctuation around the average concentration.
#' @export
pk.calc.deg.fluc <- function(cmax, cmin, cav) {
  ret <- 100*(cmax - cmin)/cav
  mask_zero <- is.na(cav) | cav == 0
  if (any(mask_zero)) {
    ret[mask_zero] <- NA_real_
  }
  ret
}
add.interval.col("deg.fluc",
                 FUN="pk.calc.deg.fluc",
                 unit_type="%",
                 pretty_name="Degree of fluctuation",
                 desc="Degree of fluctuation",
                 depends=c("cmax", "cmin", "cav"))
PKNCA.set.summary(
  name="deg.fluc",
  description="arithmetic mean and standard deviation",
  point=business.mean,
  spread=business.sd
)

#' Determine the PK swing
#'
#' @details swing is `100*(cmax - cmin)/cmin`.
#'
#' @param cmax The maximum observed concentration
#' @param cmin The minimum observed concentration
#' @returns The swing above the minimum concentration.  If `cmin` is zero, then
#'   the result is infinity.
#' @export
pk.calc.swing <- function(cmax, cmin) {
  if (cmin > 0) {
    100*(cmax - cmin)/cmin
  } else {
    Inf
  }
}
add.interval.col("swing",
                 FUN="pk.calc.swing",
                 unit_type="%",
                 pretty_name="Swing",
                 desc="Swing relative to Cmin",
                 depends=c("cmax", "cmin"))
PKNCA.set.summary(
  name="swing",
  description="arithmetic mean and standard deviation",
  point=business.mean,
  spread=business.sd
)

#' Determine the concentration at the end of infusion
#'
#' @inheritParams assert_conc_time
#' @param duration.dose The duration for the dosing administration (typically
#'   from IV infusion)
#' @param check Run [assert_conc_time()]?
#' @returns The concentration at the end of the infusion, `NA` if
#'   `duration.dose` is `NA`, or `NA` if all `time != duration.dose`
#' @export
pk.calc.ceoi <- function(conc, time, duration.dose=NA, check=TRUE) {
  if (check) {
    assert_conc_time(conc = conc, time = time)
  }
  if (is.na(duration.dose)) {
    NA_real_
  } else if (all(time != duration.dose)) {
    NA_real_
  } else {
    conc[time == duration.dose][1]
  }
}
add.interval.col("ceoi",
                 FUN="pk.calc.ceoi",
                 unit_type="conc",
                 pretty_name="Ceoi",
                 desc="Concentration at the end of infusion",
                 depends=NULL)
PKNCA.set.summary(
  name="ceoi",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Calculate the AUC above a given concentration
#'
#' Concentrations below the given concentration (`conc_above`) will be set
#' to zero.
#' @inheritParams pk.calc.time_above
#' @returns The AUC of the concentration above the limit
#' @export
pk.calc.aucabove <- function(conc, time, conc_above = NA_real_, ..., options=list()) {
  stopifnot(length(conc_above) == 1)
  stopifnot(is.numeric(conc_above))
  if (is.na(conc_above)) {
    ret <- structure(NA_real_, exclude = "Missing concentration to be above")
  } else {
    ret <-
      pk.calc.auc(
        conc=pmax(conc - conc_above, 0), time=time, ..., options=options,
        auc.type="AUCall",
        lambda.z=NA
      )
  }
  ret
}
add.interval.col(
  "aucabove.predose.all",
  FUN="pk.calc.aucabove",
  unit_type="auc",
  pretty_name="AUC,above",
  desc="The area under the concentration time the beginning of the interval to the last concentration above the limit of quantification plus the triangle from that last concentration to 0 at the first concentration below the limit of quantification, with a concentration subtracted from all concentrations and values below zero after subtraction set to zero",
  depends="cstart",
  formalsmap = list(conc_above = "cstart")
)
PKNCA.set.summary(
  name="aucabove.predose.all",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)
add.interval.col(
  "aucabove.trough.all",
  FUN="pk.calc.aucabove",
  unit_type="auc",
  pretty_name="AUC,above",
  desc="The area under the concentration time the beginning of the interval to the last concentration above the limit of quantification plus the triangle from that last concentration to 0 at the first concentration below the limit of quantification, with a concentration subtracted from all concentrations and values below zero after subtraction set to zero",
  depends="ctrough",
  formalsmap = list(conc_above = "ctrough")
)
PKNCA.set.summary(
  name="aucabove.trough.all",
  description="geometric mean and geometric coefficient of variation",
  point=business.geomean,
  spread=business.geocv
)

#' Count the number of concentration measurements in an interval
#'
#' `count_conc` is typically used for quality control on the data to ensure that
#' there are a sufficient number of non-missing samples for a calculation and to
#' ensure that data are consistent between individuals.
#'
#' @inheritParams pk.calc.cmax
#' @returns a count of the non-missing concentrations (0 if all concentrations
#'   are missing)
#' @family NCA parameters for concentrations during the intervals
#' @export
pk.calc.count_conc <- function(conc,
                         check=TRUE) {
  if (check) {
    assert_conc(conc)
  }
  sum(!is.na(conc))
}
# Add the column to the interval specification
add.interval.col("count_conc",
                 FUN="pk.calc.count_conc",
                 values=c(FALSE, TRUE),
                 unit_type="count",
                 pretty_name="Concentration count",
                 desc="Number of non-missing concentrations for a subject",
                 depends=NULL)
PKNCA.set.summary(
  name="count_conc",
  description="median and range",
  point=business.median,
  spread=business.range
)

#' Extract the dose used for calculations
#'
#' @inheritParams pk.calc.cl
#' @returns The total dose for an interval
#' @export
pk.calc.totdose <- function(dose) {
  sum(dose)
}
add.interval.col(
  "totdose",
  FUN="pk.calc.totdose",
  values=c(FALSE, TRUE),
  unit_type="dose",
  pretty_name="Total dose",
  desc="Total dose administered during an interval"
)
PKNCA.set.summary(
  name="totdose",
  description="median and range",
  point=business.median,
  spread=business.range
)

Try the PKNCA package in your browser

Any scripts or data that you put into this service are public.

PKNCA documentation built on June 22, 2024, 9:25 a.m.