Nothing
# bm_PlotRangeSize documentation ------------------------------------------------
##' @name bm_PlotRangeSize
##' @author Maya Gueguen
##'
##' @title Plot species range change
##'
##' @description This function represents species range change from object that can be obtained
##' from \code{\link{BIOMOD_RangeSize}} function. Several graphics can be obtained, representing
##' global counts or proportions of gains / losses, as well as spatial representations (see Details).
##'
##'
##' @param bm.range an object returned by the \code{\link{BIOMOD_RangeSize}} function
##' @param do.count (\emph{optional, default} \code{TRUE}) \cr
##' A \code{logical} value defining whether the count plot is to be computed or not
##' @param do.perc (\emph{optional, default} \code{TRUE}) \cr
##' A \code{logical} value defining whether the percentage plot is to be computed or not
##' @param do.maps (\emph{optional, default} \code{TRUE}) \cr
##' A \code{logical} value defining whether the maps plot is to be computed or not
##' @param do.mean (\emph{optional, default} \code{TRUE}) \cr
##' A \code{logical} value defining whether the mean maps plot is to be computed or not
##' @param do.plot (\emph{optional, default} \code{TRUE}) \cr
##' A \code{logical} value defining whether the plots are to be rendered or not
##' @param row.names (\emph{optional, default} \code{c('Species', 'Dataset', 'Run', 'Algo')}) \cr
##' A \code{vector} containing tags matching \code{bm.range$Compt.By.Models} rownames splitted by
##' '_' character
##'
##'
##' @return
##'
##' A \code{list} containing one or several \code{data.frame} and the corresponding
##' \code{ggplot} object representing species range change.
##'
##'
##' @details
##'
##' 4 plots can be obtained with this function :
##' \describe{
##' \item{Count barplot}{representing absolute number of locations (pixels) lost, stable and
##' gained}
##' \item{Percentage barplot}{representing percentage of locations (pixels) lost, stable, and
##' the corresponding Species Range Change (\code{PercGain - PercLoss})}
##' \item{SRC models maps}{representing spatially locations (pixels) lost, stable and
##' gained for each single distribution model}
##' \item{SRC community averaging maps}{representing spatially locations (pixels) lost, stable
##' and gained, taking the majoritary value across single distribution models (and representing
##' the percentage of models' agreement)}
##' }
##' \emph{Please see \code{\link{BIOMOD_RangeSize}} function for more details about the values.}
##'
##'
##' @keywords ggplot "species range change" projections gain loss
##'
##'
##' @seealso \code{\link{BIOMOD_RangeSize}}
##' @family Secundary functions
##' @family Plot functions
##'
##'
##' @examples
##' library(terra)
##'
##' # Load species occurrences (6 species available)
##' data(DataSpecies)
##' head(DataSpecies)
##'
##' # Select the name of the studied species
##' myRespName <- 'GuloGulo'
##'
##' # Get corresponding presence/absence data
##' myResp <- as.numeric(DataSpecies[, myRespName])
##'
##' # Get corresponding XY coordinates
##' myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
##'
##' # Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
##' data(bioclim_current)
##' myExpl <- terra::rast(bioclim_current)
##'
##' \dontshow{
##' myExtent <- terra::ext(0,30,45,70)
##' myExpl <- terra::crop(myExpl, myExtent)
##' }
##'
##' # ---------------------------------------------------------------#
##' file.out <- paste0(myRespName, "/", myRespName, ".AllModels.models.out")
##' if (file.exists(file.out)) {
##' myBiomodModelOut <- get(load(file.out))
##' } else {
##'
##' # Format Data with true absences
##' myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
##' expl.var = myExpl,
##' resp.xy = myRespXY,
##' resp.name = myRespName)
##'
##' # Model single models
##' myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,
##' modeling.id = 'AllModels',
##' models = c('RF', 'GLM'),
##' CV.strategy = 'random',
##' CV.nb.rep = 2,
##' CV.perc = 0.8,
##' OPT.strategy = 'bigboss',
##' metric.eval = c('TSS','ROC'),
##' var.import = 3,
##' seed.val = 42)
##' }
##'
##' models.proj <- get_built_models(myBiomodModelOut, algo = "RF")
##' # Project single models
##' myBiomodProj <- BIOMOD_Projection(bm.mod = myBiomodModelOut,
##' proj.name = 'CurrentRangeSize',
##' new.env = myExpl,
##' models.chosen = models.proj,
##' metric.binary = 'all')
##'
##'
##'
##' # ---------------------------------------------------------------#
##' # Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
##' data(bioclim_future)
##' myExplFuture <- terra::rast(bioclim_future)
##' \dontshow{
##' myExtent <- terra::ext(0,30,45,70)
##' myExplFuture <- terra::crop(myExplFuture, myExtent)
##' }
##'
##' # Project onto future conditions
##' myBiomodProjectionFuture <- BIOMOD_Projection(bm.mod = myBiomodModelOut,
##' proj.name = 'FutureRangeSize',
##' new.env = myExplFuture,
##' models.chosen = models.proj,
##' metric.binary = 'TSS')
##'
##' # Load current and future binary projections
##' CurrentProj <- get_predictions(myBiomodProj,
##' metric.binary = "TSS",
##' model.as.col = TRUE)
##' FutureProj <- get_predictions(myBiomodProjectionFuture,
##' metric.binary = "TSS",
##' model.as.col = TRUE)
##'
##' # Compute differences
##' myBiomodRangeSize <- BIOMOD_RangeSize(proj.current = CurrentProj, proj.future = FutureProj)
##'
##'
##' # ---------------------------------------------------------------#
##' myBiomodRangeSize$Compt.By.Models
##' plot(myBiomodRangeSize$Diff.By.Pixel)
##'
##' # Represent main results
##' bm_PlotRangeSize(bm.range = myBiomodRangeSize)
##'
##'
##' @importFrom graphics plot.new
##' @importFrom reshape2 melt
##' @importFrom foreach foreach %do%
##' @importFrom terra rast which.max nlyr classify plot
##' @importFrom ggplot2 ggplot aes_string geom_col geom_tile facet_wrap xlab ylab labs scale_fill_viridis_c
##' theme element_blank element_rect scale_fill_manual
##'
##' @export
##'
##'
#------------------------------------------------------------------------------#
bm_PlotRangeSize <- function(bm.range, do.count = TRUE, do.perc = TRUE
, do.maps = TRUE, do.mean = TRUE, do.plot = TRUE
, row.names = c('Species', 'Dataset', 'Run', 'Algo'))
{
## 0. Check arguments ---------------------------------------------------------------------------
if (!is.list(bm.range) ||
(is.list(bm.range) && length(bm.range) != 2) ||
(is.list(bm.range) && length(bm.range) == 2 && !all(c("Compt.By.Models", "Diff.By.Pixel") %in% names(bm.range)))) {
stop("'bm.range' must be an object obtained by the BIOMOD_RangeSize function")
}
out = list()
## 1. Create PLOTS for Compt.By.Models ----------------------------------------------------------
if (do.count || do.perc)
{
ggdat = as.data.frame(bm.range$Compt.By.Models)
## Get models information
ggdat$full.name = rownames(ggdat)
{
tmp = strsplit(ggdat$full.name[1], "_")[[1]][1:length(row.names)]
names(tmp) = row.names
warning(paste0("Please check that rownames(bm.range$Compt.By.Models) match 'row.names' argument :\n"
, paste0("\t", paste0(tmp, " : ", names(tmp)), collapse = "\n")))
}
for (ii in 1:length(row.names)) {
ggdat[[row.names[ii]]] = sapply(ggdat$full.name, function(x) strsplit(x, "_")[[1]][ii])
}
## Rearrange data
ggdat = melt(ggdat, measure.vars = row.names, variable.name = "group.level", value.name = "group.value")
ggdat = melt(ggdat, measure.vars = c("Loss", "Stable0", "Stable1", "Gain"), variable.name = "count.level", value.name = "count.value")
ggdat$PercLoss = ggdat$PercLoss * (-1)
ggdat = melt(ggdat, measure.vars = c("PercLoss", "PercGain", "SpeciesRangeChange"), variable.name = "perc.level", value.name = "perc.value")
ggdat = melt(ggdat, measure.vars = c("CurrentRangeSize", "FutureRangeSize.NoDisp", "FutureRangeSize.FullDisp")
, variable.name = "range.level", value.name = "range.value")
## a. Count plot ----------------------------------------------------------
if (do.count) {
gg.count = ggplot(ggdat[which(ggdat$count.level != "Stable0"), ]
, aes_string(x = "group.value", y = "count.value", fill = "count.level")) +
geom_col(position = "stack") +
facet_wrap("group.level", scales = "free") +
scale_fill_manual("", values = c("Loss" = "#fc8d62"
, "Gain" = "#66c2a5"
, "Stable1" = "grey")) +
xlab("") +
ylab("Number of pixels\n") +
theme(legend.title = element_blank()
, legend.key = element_rect(fill = "white")
, legend.position = "top")
} else { gg.count = NULL }
## b. Percentage plot -----------------------------------------------------
if (do.perc) {
gg.perc = ggplot(ggdat, aes_string(x = "group.value", y = "perc.value", fill = "perc.level")) +
geom_col(position = "dodge") +
# geom_boxplot() +
facet_wrap("group.level", scales = "free_x") +
scale_fill_manual("", values = c("PercLoss" = "#fc8d62"
, "PercGain" = "#66c2a5"
, "SpeciesRangeChange" = "#8da0cb")) +
xlab("") +
ylab("Percentage (%)\n") +
theme(legend.title = element_blank()
, legend.key = element_rect(fill = "white")
, legend.position = "top")
} else { gg.perc = NULL }
out$tab.count = ggdat
out$plot.count = invisible(gg.count)
out$plot.perc = invisible(gg.perc)
}
## 2. Create PLOTS for Diff.By.Pixel ------------------------------------------------------------
if (do.maps || do.mean)
{
ggdat = bm.range$Diff.By.Pixel
## c. SRC maps per model --------------------------------------------------
if (do.maps) {
# gg.maps = 'terra::plot(ggdat, col = c("-2" = "#fc8d62", "-1" = "grey", "0" = "white", "1" = "#66c2a5")
# , legend.width = 2, legend.shrink = 0.7
# , axis.args = list(at = c(-2, -1, 0, 1), labels = c("Loss", "Stable1", "Stable0", "Gain"), cex.axis = 1))'
gg.maps <- 'plot(ggdat,
col = data.frame(
value = c(-2, -1, 0, 1),
color = c("#fc8d62", "lightgoldenrod2", "grey", "#66c2a5")),
colNA = "white")'
# ggdat = as.data.frame(rasterToPoints(ggdat))
#
# ## Get models information
# ggdat = melt(ggdat, id.vars = c("x", "y"), variable.name = "full.name", value.name = "SRC")
# for (ii in 1:length(row.names)) { ggdat[[row.names[ii]]] = NA }
# for (jj in 1:nrow(corres)) {
# ind = which(ggdat$full.name == corres$full.name[jj])
# for (ii in 1:length(row.names)) {
# ggdat[ind, row.names[ii]] = corres[jj, row.names[ii]]
# }
# }
#
# ## Rearrange data
# ggdat = melt(ggdat, measure.vars = row.names, variable.name = "group.level", value.name = "group.value")
#
# ## Do plot
# gg.maps = ggplot(ggdat, aes_string(x = "x", y = "y", fill = "as.factor(SRC)")) +
# geom_raster() +
# facet_wrap("full.name") +
# scale_fill_manual("", values = c("-2" = "#fc8d62"
# , "-1" = "grey"
# , "0" = "white"
# , "1" = "#66c2a5")
# , labels = c("-2" = "Loss"
# , "-1" = "Stable1"
# , "0" = ""
# , "1" = "Gain")) +
# xlab("") +
# ylab("") +
# theme(legend.title = element_blank()
# , legend.key = element_rect(fill = "white")
# , legend.position = "top")
out$tab.maps = ggdat
out$plot.maps = invisible(gg.maps)
} else { gg.maps = NULL }
## d. SRC mean maps per group.level ---------------------------------------
if (do.mean) {
if(!requireNamespace('ggpubr', quietly = TRUE)) stop("Package 'ggpubr' not found")
corres = data.frame(full.name = names(ggdat))
for (ii in 1:length(row.names)) {
corres[[row.names[ii]]] = sapply(corres$full.name, function(x) strsplit(x, "_")[[1]][ii])
}
reclass_table = data.frame(is = c(1, 2, 3), becomes = c(1, -1, -2))
fun_mode = function(x) {
tmp = table(x)
return(names(tmp)[which.max(tmp)])
}
list.cons = list.perc = list()
for (ii in row.names) {
for (jj in unique(corres[, ii])) {
ras = ggdat[[corres$full.name[which(corres[, ii] == jj)]]]
if (nlyr(ras) > 1) {
stk = foreach (vali = c(1, -1, -2), .combine = "c") %do% {
res = ras
res = classify(res, rcl = matrix(c(vali,1), ncol = 2), others = 0)
res = sum(res, na.rm = TRUE)
names(res) = paste0("VAL_", vali)
res = classify(res, rcl = matrix(c(0,NA), ncol = 2))
return(res)
}
ras1 = which.max(stk)
ras1 = classify(ras1, reclass_table)
ras2 = max(stk, na.rm = TRUE) / sum(stk, na.rm = TRUE)
list.cons[[paste0(ii, "_", jj)]] = ras1
list.perc[[paste0(ii, "_", jj)]] = ras2
}
}
}
if (length(list.cons) > 0 && length(list.perc) > 0) {
stk.cons = rast(list.cons)
stk.perc = rast(list.perc)
tab1 = as.data.frame(stk.cons, xy = TRUE)
tab1 = melt(tab1, id.vars = c("x", "y"))
tab1$group.level = tab1$group.value = ""
for (ii in row.names) {
tab1$group.level[grep(ii, tab1$variable)] = ii
}
for (jj in unique(unlist(corres[, 2:ncol(corres)]))) {
tab1$group.value[grep(jj, tab1$variable)] = jj
}
tab1$value[which(is.na(tab1$value))] = 0
tab2 = as.data.frame(stk.perc, xy = TRUE)
tab2 = melt(tab2, id.vars = c("x", "y"))
tab2$group.level = tab2$group.value = ""
for (ii in row.names) { tab2$group.level[grep(ii, tab2$variable)] = ii }
for (jj in unique(unlist(corres[, 2:ncol(corres)]))) { tab2$group.value[grep(jj, tab2$variable)] = jj }
tab2$value[which(tab2$value == 1 & tab1$value == 0)] = NA
gg.ca1 = ggplot(tab1, aes_string(x = "x", y = "y", fill = "as.factor(value)")) +
geom_tile() +
facet_wrap("group.level ~ group.value") +
scale_fill_manual("", values = c("-2" = "#fc8d62"
, "-1" = "grey"
, "0" = "white"
, "1" = "#66c2a5")
, labels = c("-2" = "Loss"
, "-1" = "Stable1"
, "0" = ""
, "1" = "Gain")) +
xlab("") +
ylab("") +
labs(title = "Community averaging value across models") +
theme(legend.title = element_blank()
, legend.key = element_rect(fill = "white")
, legend.position = "top")
gg.ca2 = ggplot(tab2, aes_string(x = "x", y = "y", fill = "value")) +
geom_tile() +
facet_wrap("group.level ~ group.value") +
scale_fill_viridis_c(""
, direction = -1
, limits = c(0, 1)
, na.value = "white"
, breaks = seq(0, 1, 0.5)
, labels = paste0(seq(0, 100, 50), "%")) +
xlab("") +
ylab("") +
labs(title = "Percentage of models' agreement") +
theme(legend.key = element_rect(fill = "white")
, legend.position = "top")
gg.ca = ggpubr::ggarrange(gg.ca1, gg.ca2, ncol = 2)
out$tab.ca1 = tab1
out$tab.ca2 = tab2
out$plot.ca = invisible(gg.ca)
} else {
gg.ca = NULL
warning("'do.mean' is only available if several maps are provided")
}
} else { gg.ca = NULL }
} else {
gg.maps = NULL
gg.ca = NULL
}
## RETURN PLOTS
if (do.plot) {
print(gg.count)
plot.new()
print(gg.perc, newpage = FALSE)
eval(parse(text = gg.maps))
print(gg.ca)
}
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.