Nothing
#' Generate a random seed
#'
#' From the current seed.
#'
#' @return A random seed
#'
#' @examples
#' random_seed()
#'
#' @export
random_seed <- function() {
sample.int(.Machine$integer.max, 1)
}
#' Infer one or more trajectories from a single-cell dataset
#'
#' @param dataset One or more datasets as created by [wrap_data()] or [wrap_expression()]. Prior information can be added using [add_prior_information()].
#' @param method One or more methods. Must be one of:
#' \itemize{
#' \item{an object or list of ti_... objects (e.g. `dynmethods::ti_comp1`,}
#' \item{a character vector containing the names of methods to execute (e.g. `"scorpius"`),}
#' \item{a character vector containing dockerhub repositories (e.g. `dynverse/paga`), or}
#' \item{a dynguidelines data frame.}
#' }
#' @param parameters A set of parameters to be used during trajectory inference.
#' A parameter set must be a named list of parameters.
#' If multiple methods were provided in the `method` parameter,
#' `parameters` must be an unnamed list of the same length.
#' @param give_priors All the priors a method is allowed to receive.
#' Must be a subset of all available priors ([dynwrap::priors]).
#' @param seed A seed to be passed to the TI method.
#' @param map_fun A map function to use when inferring trajectories with multiple datasets or methods.
#' Allows to parallellise the execution in an arbitrary way.
#' @param verbose Whether or not to print information output.
#' @param return_verbose Whether to store and return messages printed by the method.
#' @param debug Used for debugging containers methods.
#'
#' @keywords infer_trajectory
#'
#' @importFrom utils capture.output adist installed.packages
#' @importFrom readr read_file
#' @importFrom stringr str_length
#' @importFrom dynutils extract_row_to_list
#'
#' @return
#' **`infer_trajectory`**: A trajectory object, which is a list containing
#' - *milestone_ids*: The names of the milestones, a character vector.
#' - *milestone_network*: The network between the milestones, a dataframe with the from milestone, to milestone, length of the edge, and whether it is directed.
#' - *divergence_regions*: The regions between three or more milestones where cells are diverging, a dataframe with the divergence id, the milestone id and whether this milestone is the start of the divergence
#' - *milestone_percentages*: For each cell its closeness to a particular milestone, a dataframe with the cell id, the milestone id, and its percentage (a number between 0 and 1 where higher values indicate that a cell is close to the milestone).
#' - *progressions*: For each cell its progression along a particular edge of the *milestone_network*. Contains the same information as *milestone_percentages*. A dataframe with cell id, from milestone, to milestone, and its percentage (a number between 0 and 1 where higher values indicate that a cell is close to the 'to' milestone and far from the 'from' milestone).
#' - *cell_ids*: The names of the cells
#'
#' Some methods will include additional information in the output, such as
#'
#' - A dimensionality reduction (*dimred*), the location of the trajectory milestones and edges in this dimensionality reduction (*dimred_milestones*, *dimred_segment_progressions* and *dimred_segment_points*). See [add_dimred()] for more information on these objects.
#' - A cell grouping (*grouping*). See [add_grouping()] for more information on this object.
#'
#' **`infer_trajectories`**: A tibble containing the dataset and method identifiers (*dataset_id* and *method_id*), the trajectory model as described above (*model*), and a *summary* containing the execution times, output and error if appropriate
#'
#' @examples
#' dataset <- example_dataset
#' method <- get_ti_methods(as_tibble = FALSE)[[1]]$fun
#'
#' trajectory <- infer_trajectory(dataset, method())
#'
#' head(trajectory$milestone_network)
#' head(trajectory$progressions)
#'
#' @export
infer_trajectories <- function(
dataset,
method,
parameters = NULL,
give_priors = NULL,
seed = random_seed(),
verbose = FALSE,
return_verbose = FALSE,
debug = FALSE,
map_fun = map
) {
# process method ----------------------
if (is.character(method) && grepl("/", method)) {
method <- list_as_tibble(list(create_ti_method_container(method)()))
} else if (is.character(method)) {
# names of method
# get a list of all methods
descs <- get_ti_methods(method_ids = method)
method <- list_as_tibble(map(descs$fun, ~.()))
} else if (is_ti_method(method)) {
# single method
method <- list_as_tibble(list(method))
} else if (is.data.frame(method)) {
# dataframe
} else if (is.list(method)) {
# list of method
method <- list_as_tibble(method)
} else if ("dynguidelines::guidelines" %in% class(method)) {
# guidelines object
method <- method$methods_selected
} else {
stop("Invalid method argument, it is of class ", paste0(class(method), collapse = ", "))
}
# turn method(s) into a list of methods (again)
method <- map(seq_len(nrow(method)), extract_row_to_list, tib = method)
# process parameters ----------------
# if not parameters given, make an empty param
if (is.null(parameters) || length(parameters) == 0) {
parameters <- map(seq_along(method), ~list())
}
assert_that(is.list(parameters))
# if a single set of parameters was given, make it a list
if (length(method) == 1 && !is.null(names(parameters))) {
parameters <- list(parameters)
}
# at this stage, parameters should be an unnamed list (with length = # methods) containing named lists
is_list_of_paramsets <- is.null(names(parameters)) && all(map_lgl(parameters, function(x) length(x) == 0 || !is.null(names(x))))
if (!is_list_of_paramsets) {
stop(
sQuote("parameters"), " must be an unnamed list of named lists, ",
"where the named lists correspond to the parameters of methods to be executed. ",
"If only one method is to be executed, ", sQuote("parameters"), " can also be a single ",
"named list of parameters."
)
}
# check whether parameters is of the correct length
assert_that(length(method) == length(parameters))
# process dataset ----------------------
if (dynwrap::is_data_wrapper(dataset)) {
# allow single dataset
dataset <- list_as_tibble(list(dataset))
} else if (is.data.frame(dataset)) {
# dataframe of datasets
} else if (is.list(dataset)) {
# list of datasets
dataset <- list_as_tibble(dataset)
} else {
stop("Invalid dataset argument, it is of class ", paste0(class(dataset), collapse = ", "))
}
dataset <- map(seq_len(nrow(dataset)), extract_row_to_list, tib = dataset)
# Run methods on each datasets ---------
# construct overall design
design <- crossing(
dataset_ix = seq_along(dataset),
method_ix = seq_along(method)
)
output <- map_fun(
seq_len(nrow(design)),
function(ri) {
seed_ <- if (is.function(seed)) seed() else seed
.method_execute(
dataset = dataset[[design$dataset_ix[[ri]]]],
method = method[[design$method_ix[[ri]]]],
parameters = parameters[[design$method_ix[[ri]]]],
give_priors = give_priors,
seed = seed_,
verbose = verbose,
return_verbose = return_verbose,
debug = debug
)
}
)
tibble(
dataset_ix = design$dataset_ix,
method_ix = design$method_ix,
dataset_id = map_chr(dataset, "id")[design$dataset_ix],
method_id = map_chr(method, function(m) m$method$id)[design$method_ix],
method_name = map_chr(method, function(m) m$method$name)[design$method_ix],
model = map(output, "trajectory"),
summary = map(output, "summary")
)
}
#' @rdname infer_trajectories
#' @param ... Any additional parameters given to the method, will be concatenated to the parameters argument
#' @export
infer_trajectory <- dynutils::inherit_default_params(
list(infer_trajectories),
function(
dataset,
method,
parameters,
give_priors,
seed,
verbose,
return_verbose,
debug,
...
) {
parameters <- c(parameters, list(...))
design <- infer_trajectories(
dataset = dataset,
method = method,
parameters = list(parameters),
give_priors = give_priors,
seed = seed,
verbose = verbose,
return_verbose = return_verbose,
debug = debug
)
if (isTRUE(debug)) {
invisible()
} else if (is.null(design$model[[1]])) {
error <- design$summary[[1]]$error[[1]]
cat(crayon::red(crayon::bold(error)))
stop("Error during trajectory inference, see output above \U2191\U2191\U2191" , call. = FALSE)
} else {
first(design$model)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.