Nothing
register.fd <- function(y0fd=NULL, yfd=NULL, WfdParobj=NULL,
conv=1e-4, iterlim=20, dbglev=1, periodic=FALSE, crit=2)
{
#REGISTERFD registers a set of curves YFD to a target function Y0FD.
# Arguments are:
# Y0FD ... Functional data object for target function. It may be either
# a single curve, or have the same dimensions as YFD.
# YFD ... Functional data object for functions to be registered
# WFDPAROBJ ... Functional parameter object for function W defining warping
# functions. The basis that is defined in WFDPAROBJ must be a
# B-spline basis, and the number of basis functions must be at
# least 2.
# The coefficients, which supplied either in a functional
# data object or as defaults to zero if a basis object is
# supplied in the definition of WFDPAROBJ are used as the
# initial values in the iterative computation of the final
# warping functions.
# NB: The value of the first coefficient is NOT used.
# This is because a warping function is normalized, and when
# this happens, the impact of the first coefficient, if used,
# would be eliminated. This first position is used, however, to
# contain the shift parameter in case the data are to be
# treated as periodic. At the end of the calculations,
# the shift parameter is returned separately.
# If WFDPAROBJ is not supplied, it defaults to a bspline
# basis of order 2 with 2 basis functions. This is equivalent
# to using a linear function for W.
# CONV ... Convergence criterion
# ITERLIM ... iteration limit for scoring iterations
# DBGLEV ... Level of output of computation history
# PERIODIC... If one, curves are periodic and a shift parameter is fit.
# Initial value for shift parameter is taken to be 0.
# The periodic option should ONLY be used with a Fourier
# basis for the target function Y0FD, the functions to be
# registered, YFD.
# CRIT ... If 1 least squares, if 2 log eigenvalue ratio. Default is 1.
# Returns:
# REGLIST ... A list with fields:
# REGLIST$REGFD ... A functional data object for the registered curves
# REGLIST$WARPFD ... A Functional data object for warping functions h
# REGLIST$WFD ... A Functional data object for functions W defining
# warping fns
# REGLIST$SHIFT ... Shift parameter value if curves are periodic
# REGLIST$Y0FD ... Argument Y0FD
# REGLIST$YFD ... Argument YFD
# Last modified 16 November 2021 by Jim Ramsay
##
## 1. Check y0fd and yfd
##
# if YFD is not supplied, and therefore defaults to NULL, it is
# assumed that the first argument is to be taken as YFD, and that
# the target function Y0FD defaults to NULL. In this event, Y0FD
# is set up as the mean of the functions in YFD.
if(is.null(yfd)){
yfd <- y0fd
y0fd <- NULL
}
# Check that YFD is a functional data object
if (!(inherits(yfd, "fd")))
stop("'yfd' must be a functional data object. ",
"Instead, class(yfd) = ", class(yfd))
# If target Y0FD is not supplied, and therefore defaults to NULL, replace
# it be the mean of the functions in YFD
if(is.null(y0fd)) {
y0fd <- mean.fd(yfd)
} else {
if (!(inherits(y0fd, "fd")))
stop("First argument is not a functional data object.",
"Instead, class(y0fd) = ", class(y0fd))
}
# get dimensions of functions in YFD to be registered
ycoefs <- yfd$coefs
if (is.vector(ycoefs)) ycoefs = as.matrix(ycoefs)
ydim <- dim(ycoefs)
ncurve <- ydim[2]
ndimy <- length(ydim)
if (ndimy == 3) {
nvar <- ydim[3]
} else {
nvar <- 1
}
if (ndimy > 3) stop("'yfd' is more than 3-dimensional.")
# Extract basis information from YFD
ybasis <- yfd$basis
ynbasis <- ybasis$nbasis
yrange <- ybasis$rangeval
if (periodic && !(ybasis$type == "fourier"))
stop("'periodic' is TRUE but 'type' is not 'fourier'; ",
"periodic B-splines are not currently part of 'fda'")
# Get dimensions of target function object Y0FD
y0coefs0 <- y0fd$coefs
if (is.vector(y0coefs0)) y0coefs0 = as.matrix(y0coefs0)
y0dim0 <- dim(y0coefs0)
ndimy00 <- length(y0dim0)
if (ndimy00 > ndimy) stop("Y0FD has more dimensions than YFD")
# Determine whether the target function is full or not
if (y0dim0[2] == 1) {
fulltarg <- FALSE
} else {
if (y0dim0[2] == ydim[2]) {
fulltarg <- TRUE
} else {
stop(paste("Second dimension of coefficient matrix for Y0FD",
"is neither 1 nor equal to the number of functions",
"to be registered."))
}
}
if (ndimy00 == 3 && ydim[3] != y0dim0[3]) stop(
"Third dimension of YOFD does not match that of YFD.")
# Extract basis information from Y0FD
y0basis <- y0fd$basis
y0nbasis <- y0basis$nbasis
y0range <- y0basis$rangeval
# check that target range matches function range
if (!all(y0range == yrange)) stop(
"Range for Y0FD does not match range for YFD.")
##
## 2. Check WfdParobj
##
if (is.null(WfdParobj)) {
# default WfdParobj to a B-spline basis of order 2 with 2 basis functions
wbasis <- create.bspline.basis(yrange,2,2)
Wfd0 <- fd(matrix(0,2,ncurve),wbasis)
WfdParobj <- fdPar(Wfd0)
}
WfdParobj <- fdParcheck(WfdParobj, ncurve)
Wfd0 <- WfdParobj$fd
wcoef <- Wfd0$coefs
if (is.vector(wcoef)) wcoef <- as.matrix(wcoef)
wbasis <- Wfd0$basis
wtype <- wbasis$type
if (wtype != "bspline") stop("Basis for Wfd is not a B-spline basis.")
wnbasis <- wbasis$nbasis
norder <- wnbasis - length(wbasis$params)
if (wnbasis < 2) stop(
"At least two basis functions for W are required.")
if (norder < 2) stop(
"The order of the basis functions for W must be at least 2.")
wtype <- wbasis$type
rangex <- wbasis$rangeval
wdim <- dim(wcoef)
if (length(wdim) > 2) stop("WFDPAROBJ contains a multivariate function.")
if (wdim[2] == 1) {
wcoef <- wcoef %*% matrix(1,1,ncurve)
Wfd0$coefs <- wcoef
} else {
if (wdim[2] != ncurve) stop(
"WFDPAROBJ and YFD containing differing numbers of functions.")
}
##
## 3. Do the work
##
# set up a fine mesh of argument values
NFINEMIN <- 201
nfine <- 10*ynbasis + 1
if (nfine < NFINEMIN) nfine <- NFINEMIN
xlo <- rangex[1]
xhi <- rangex[2]
width <- xhi - xlo
xfine <- seq(xlo, xhi, len=nfine)
# set up indices of coefficients that will be modified in ACTIVE
wcoef1 <- wcoef[1,]
if (periodic) {
active <- 1:wnbasis
wcoef[1] <- 0
shift <- 0
} else {
active <- 2:wnbasis
}
# initialize matrix Kmat defining penalty term
lambda <- WfdParobj$lambda
if (lambda > 0) {
Lfdobj <- WfdParobj$Lfd
Kmat <- getbasispenalty(wbasis, Lfdobj)
ind <- 2:wnbasis
Kmat <- lambda*Kmat[ind,ind]
} else {
Kmat <- NULL
}
# set up limits on coefficient sizes
climit <- 50*c(-rep(1,wnbasis), rep(1,wnbasis))
# set up cell for storing basis function values
JMAX <- 15
basislist <- vector("list", JMAX)
yregcoef <- yfd$coefs
# loop through the curves
wcoefnew <- wcoef
if (dbglev == 0 && ncurve > 1) cat("Progress: Each dot is a curve\n")
for (icurve in 1:ncurve) {
if (dbglev == 0 && ncurve > 1) cat(".")
if (dbglev >= 1 && ncurve > 1)
cat(paste("\n\n------- Curve ",icurve," --------\n"))
if (ncurve == 1) {
yfdi <- yfd
y0fdi <- y0fd
Wfdi <- Wfd0
cvec <- wcoef
} else {
Wfdi <- Wfd0[icurve]
cvec <- wcoef[,icurve]
if (nvar == 1) {
yfdi <- yfd[icurve]
} else {
yfdi <- yfd[icurve]
yfdi$coef <- array(yfdi$coef,c(ynbasis,1,nvar))
}
if (fulltarg) {
if (nvar == 1) {
y0fdi <- y0fd[icurve]
} else {
y0fdi <- y0fd[icurve,]
}
} else {
y0fdi <- y0fd
}
}
# evaluate curve to be registered at fine mesh
yfine <- matrix(eval.fd(xfine, yfdi, 0),nfine,nvar)
# evaluate target curve at fine mesh
y0fine <- matrix(eval.fd(xfine, y0fdi, 0),nfine,nvar)
# evaluate objective function for starting coefficients
# first evaluate warping function and its derivative at fine mesh
ffine <- monfn(xfine, Wfdi, basislist)
Dffine <- mongrad(xfine, Wfdi, basislist)
fmax <- ffine[nfine]
Dfmax <- Dffine[nfine,]
hfine <- xlo + width*ffine/fmax
Dhfine <- width*(fmax*Dffine - outer(ffine,Dfmax))/fmax^2
hfine[1] <- xlo
hfine[nfine] <- xhi
# register curves given current Wfdi
yregfdi <- regyfn(xfine, yfine, hfine, yfdi, Wfdi, periodic)
# compute initial criterion value and gradient
Flist <- regfngrad(xfine, y0fine, Dhfine, yregfdi, Wfdi,
Kmat, periodic, crit)
# compute the initial expected Hessian
if (crit == 2) {
D2hwrtc <- monhess(xfine, Wfdi, basislist)
D2fmax <- D2hwrtc[nfine,]
fmax2 <- fmax*fmax
fmax3 <- fmax*fmax2
m <- 1
if (wnbasis > 1) {
for (j in 2:wnbasis) {
m <- m + 1
for (k in 2:j) {
m <- m + 1
D2hwrtc[,m] <- width*(2*ffine*Dfmax[j]*Dfmax[k]
- fmax*(Dffine[,j]*Dfmax[k] + Dffine[,k]*Dfmax[j])
+ fmax2*D2hwrtc[,m] - ffine*fmax*D2fmax[m])/fmax3
}
}
}
} else {
D2hwrtc <- NULL
}
hessmat <- reghess(xfine, y0fine, Dhfine, D2hwrtc, yregfdi,
Kmat, periodic, crit)
# evaluate the initial update vector for correcting the initial cvec
result <- linesearch(Flist, hessmat, dbglev)
deltac <- result[[1]]
cosangle <- result[[2]]
# initialize iteration status arrays
iternum <- 0
status <- c(iternum, Flist$f, Flist$norm)
if (dbglev >= 1) {
cat("\nIter. Criterion Grad Length")
cat("\n")
cat(iternum)
cat(" ")
cat(round(status[2],4))
cat(" ")
cat(round(status[3],4))
}
iterhist <- matrix(0,iterlim+1,length(status))
iterhist[1,] <- status
if (iterlim == 0) break
# ------- Begin main iterations -----------
MAXSTEPITER <- 5
MAXSTEP <- 100
trial <- 1
reset <- 0
linemat <- matrix(0,3,5)
cvecold <- cvec
Foldlist <- Flist
dbgwrd <- dbglev >= 2
# --------------- beginning of optimization loop -----------
for (iter in 1:iterlim) {
iternum <- iternum + 1
# set logical parameters
dblwrd <- rep(FALSE,2)
limwrd <- rep(FALSE,2)
ind <- 0
ips <- 0
# compute slope
linemat[2,1] <- sum(deltac*Foldlist$grad)
# normalize search direction vector
sdg <- sqrt(sum(deltac^2))
deltac <- deltac/sdg
linemat[2,1] <- linemat[2,1]/sdg
# initialize line search vectors
linemat[,1:4] <- outer(c(0, linemat[2,1], Flist$f),rep(1,4))
stepiter <- 0
if (dbglev >= 2) {
cat("\n")
cat(paste(" ", stepiter, " "))
cat(format(round(t(linemat[,1]),4)))
}
# return with stop condition if initial slope is nonnegative
if (linemat[2,1] >= 0) {
if (dbglev >= 2) cat("\nInitial slope nonnegative.")
ind <- 3
break
}
# return successfully if initial slope is very small
if (linemat[2,1] >= -min(c(1e-3,conv))) {
if (dbglev >= 2) cat("\nInitial slope too small")
ind <- 0
break
}
# first step set to trial
linemat[1,5] <- trial
# ------------ begin line search iteration loop ----------
cvecnew <- cvec
Wfdnewi <- Wfdi
for (stepiter in 1:MAXSTEPITER) {
# check the step size and modify if limits exceeded
result <- stepchk(linemat[1,5], cvec, deltac, limwrd, ind,
climit, active, dbgwrd)
linemat[1,5] <- result[[1]]
ind <- result[[2]]
limwrd <- result[[3]]
if (ind == 1) break # break of limit hit twice in a row
if (linemat[1,5] <= 1e-7) {
# Current step size too small terminate
if (dbglev >= 2)
cat("\nStepsize too small: ", round(linemat[1,5],4))
break
}
# update parameter vector
cvecnew <- cvec + linemat[1,5]*deltac
# compute new function value and gradient
Wfdnewi[[1]] <- cvecnew
# first evaluate warping function and its derivative at fine mesh
cvectmp <- cvecnew
cvectmp[1] <- 0
Wfdtmpi <- Wfdnewi
Wfdtmpi[[1]] <- cvectmp
ffine <- monfn(xfine, Wfdtmpi, basislist)
Dffine <- mongrad(xfine, Wfdtmpi, basislist)
fmax <- ffine[nfine]
Dfmax <- Dffine[nfine,]
hfine <- xlo + width*ffine/fmax
Dhfine <- width*(fmax*Dffine - outer(ffine,Dfmax))/fmax^2
hfine[1] <- xlo
hfine[nfine] <- xhi
# register curves given current Wfdi
yregfdi <- regyfn(xfine, yfine, hfine, yfdi, Wfdnewi, periodic)
Flist <- regfngrad(xfine, y0fine, Dhfine, yregfdi, Wfdnewi,
Kmat, periodic, crit)
linemat[3,5] <- Flist$f
# compute new directional derivative
linemat[2,5] <- sum(deltac*Flist$grad)
if (dbglev >= 2) {
cat("\n")
cat(paste(" ", stepiter, " "))
cat(format(round(t(linemat[,5]),4)))
}
# compute next line search step, also testing for convergence
result <- stepit(linemat, ips, dblwrd, MAXSTEP)
linemat <- result[[1]]
ips <- result[[2]]
ind <- result[[3]]
dblwrd <- result[[4]]
trial <- linemat[1,5]
# ind == 0 implies convergence
if (ind == 0 || ind == 5) break
}
# ------------ end line search iteration loop ----------
cvec <- cvecnew
Wfdi <- Wfdnewi
# test for function value made worse
if (Flist$f > Foldlist$f) {
# Function value worse warn and terminate
ier <- 1
if (dbglev >= 2) {
cat("Criterion increased, terminating iterations.\n")
cat(paste("\n",round(c(Foldlist$f, Flist$f),4)))
}
# reset parameters and fit
cvec <- cvecold
Wfdi[[1]] <- cvecold
Flist <- Foldlist
deltac <- -Flist$grad
if (dbglev > 2) {
for (i in 1:wnbasis) cat(cvec[i])
cat("\n")
}
if (reset == 1) {
# This is the second time in a row that this
# has happened quit
if (dbglev >= 2) cat("Reset twice, terminating.\n")
break
} else {
reset <- 1
}
} else {
# function value has not increased, check for convergence
if (abs(Foldlist$f-Flist$f) < conv) {
wcoef[,icurve] <- cvec
status <- c(iternum, Flist$f, Flist$norm)
iterhist[iter+1,] <- status
if (dbglev >= 1) {
cat("\n")
cat(iternum)
cat(" ")
cat(round(status[2],4))
cat(" ")
cat(round(status[3],4))
}
break
}
# update old parameter vectors and fit list
cvecold <- cvec
Foldlist <- Flist
# update the expected Hessian
if (crit == 2) {
cvectmp <- cvec
cvectmp[1] <- 0
Wfdtmpi[[1]] <- cvectmp
D2hwrtc <- monhess(xfine, Wfdtmpi, basislist)
D2fmax <- D2hwrtc[nfine,]
# normalize 2nd derivative
fmax2 <- fmax*fmax
fmax3 <- fmax*fmax2
m <- 1
if (wnbasis > 1) {
for (j in 2:wnbasis) {
m <- m + 1
for (k in 2:j) {
m <- m + 1
D2hwrtc[,m] <- width*(2*ffine*Dfmax[j]*Dfmax[k]
- fmax*(Dffine[,j]*Dfmax[k] + Dffine[,k]*Dfmax[j])
+ fmax2*D2hwrtc[,m] - ffine*fmax*D2fmax[m])/fmax3
}
}
}
} else {
D2hwrtc <- NULL
}
hessmat <- reghess(xfine, y0fine, Dhfine, D2hwrtc, yregfdi,
Kmat, periodic, crit)
# update the line search direction vector
result <- linesearch(Flist, hessmat, dbglev)
deltac <- result[[1]]
cosangle <- result[[2]]
reset <- 0
}
status <- c(iternum, Flist$f, Flist$norm)
iterhist[iter+1,] <- status
if (dbglev >= 1) {
cat("\n")
cat(iternum)
cat(" ")
cat(round(status[2],4))
cat(" ")
cat(round(status[3],4))
}
}
# --------------- end of optimization loop -----------
wcoef[,icurve] <- cvec
if (nvar == 1) {
yregcoef[,icurve] <- yregfdi$coefs
} else {
yregcoef[,icurve,] <- yregfdi$coefs
}
}
cat("\n")
# -------------------- end of variable loop -----------
# create functional data objects for the registered curves
regfdnames <- yfd$fdnames
regfdnames[[3]] <- paste("Registered ",regfdnames[[3]])
ybasis <- yfd$basis
regfd <- fd(yregcoef, ybasis, regfdnames)
# set up vector of time shifts
if (periodic) {
shift <- c(wcoef[1,])
wcoef[1,] <- wcoef1
} else {
shift <- rep(0,ncurve)
}
# functional data object for functions W(t)
Wfd <- fd(wcoef, wbasis)
# functional data object for warping functions
warpmat = eval.monfd(xfine, Wfd)
warpmat = rangex[1] + (rangex[2]-rangex[1])*
warpmat/outer(rep(1,nfine),warpmat[nfine,]) +
outer(rep(1,nfine),shift)
if (wnbasis > 1) {
warpfdobj = smooth.basis(xfine, warpmat, wbasis)$fd
} else {
wbasis = create.monomial.basis(rangex, 2)
warpfdobj = smooth.basis(xfine, warpmat, wbasis)$fd
}
warpfdnames <- yfd$fdnames
warpfdnames[[3]] <- paste("Warped",warpfdnames[[1]])
warpfdobj$fdnames <- warpfdnames
reglist <- list("regfd"=regfd, "warpfd"=warpfdobj, "Wfd"=Wfd,
"shift"=shift, "y0fd" =y0fd, "yfd"=yfd)
return(reglist)
}
# ----------------------------------------------------------------
regfngrad <- function(xfine, y0fine, Dhwrtc, yregfd, Wfd,
Kmat, periodic, crit=FALSE)
{
y0dim <- dim(y0fine)
if (length(y0dim) == 3) nvar <- y0dim[3] else nvar <- 1
nfine <- length(xfine)
cvec <- Wfd$coefs
ncvec <- length(cvec)
onecoef <- matrix(1,1,ncvec)
if (periodic) {
Dhwrtc[,1] <- 1
} else {
Dhwrtc[,1] <- 0
}
yregmat <- eval.fd(xfine, yregfd, 0)
Dyregmat <- eval.fd(xfine, yregfd, 1)
# loop through variables computing function and gradient values
Fval <- 0
gvec <- matrix(0,ncvec,1)
for (ivar in 1:nvar) {
y0ivar <- y0fine[,ivar]
ywrthi <- yregmat[,ivar]
Dywrthi <- Dyregmat[,ivar]
aa <- mean(y0ivar^2)
bb <- mean(y0ivar*ywrthi)
cc <- mean(ywrthi^2)
Dywrtc <- (Dywrthi %*% onecoef)*Dhwrtc
if (crit == 1) {
res <- y0ivar - ywrthi
Fval <- Fval + aa - 2*bb + cc
gvec <- gvec - 2*crossprod(Dywrtc, res)/nfine
} else {
ee <- aa + cc
ff <- aa - cc
dd <- sqrt(ff^2 + 4*bb^2)
Fval <- Fval + ee - dd
Dbb <- crossprod(Dywrtc, y0ivar)/nfine
Dcc <- 2.0 * crossprod(Dywrtc, ywrthi)/nfine
Ddd <- (4*bb*Dbb - ff*Dcc)/dd
gvec <- gvec + (Dcc - Ddd)
}
}
if (!is.null(Kmat)) {
if (ncvec > 1) {
ind <- 2:ncvec
ctemp <- cvec[ind,1]
Kctmp <- Kmat%*%ctemp
Fval <- Fval + t(ctemp)%*%Kctmp
gvec[ind] <- gvec[ind] + 2*Kctmp
}
}
# set up FLIST list containing function value and gradient
Flist <- list(f=0, grad=rep(0,ncvec), norm=0)
Flist$f <- Fval
Flist$grad <- gvec
# do not modify initial coefficient for B-spline and Fourier bases
if (!periodic) Flist$grad[1] <- 0
Flist$norm <- sqrt(sum(Flist$grad^2))
return(Flist)
}
# ---------------------------------------------------------------
reghess <- function(xfine, y0fine, Dhfine, D2hwrtc, yregfd,
Kmat, periodic, crit=FALSE)
{
#cat("\nreghess")
y0dim <- dim(y0fine)
if (length(y0dim) == 3) nvar <- y0dim[3] else nvar <- 1
nfine <- length(xfine)
wnbasis <- dim(Dhfine)[2]
onecoef <- matrix(1,1,wnbasis)
npair <- wnbasis*(wnbasis+1)/2
if (periodic) {
Dhfine[,1] <- 1
} else {
Dhfine[,1] <- 0
}
yregmat <- eval.fd(yregfd, xfine, 0)
Dyregmat <- eval.fd(yregfd, xfine, 1)
if (nvar > 1) {
y0fine <- y0fine[,1,]
yregmat <- yregmat[,1,]
Dyregmat <- Dyregmat[,1,]
}
if (crit == 2) {
D2yregmat <- eval.fd(yregfd, xfine, 2)
if (nvar > 1) D2yregmat <- D2yregmat[,1,]
if (periodic) {
D2hwrtc[,1] <- 0
if (wnbasis > 1) {
for (j in 2:wnbasis) {
m <- j*(j-1)/2 + 1
D2hwrtc[,m] <- Dhfine[,j]
}
}
} else {
D2hwrtc[,1] <- 1
if (wnbasis > 1) {
for (j in 2:wnbasis) {
m <- j*(j-1)/2 + 1
D2hwrtc[,m] <- 0
}
}
}
}
hessvec <- matrix(0,npair,1)
for (ivar in 1:nvar) {
y0i <- y0fine[,ivar]
yregmati <- yregmat[,ivar]
Dyregmati <- Dyregmat[,ivar]
Dywrtc <- ((Dyregmati %*% onecoef)*Dhfine)
if (crit == 1) {
hessmat <- 2*crossprod(Dywrtc, Dywrtc)/nfine
m <- 0
for (j in 1:wnbasis) {
for (k in 1:j) {
m <- m + 1
hessvec[m] <- hessvec[m] + hessmat[j,k]
}
}
} else {
D2yregmati <- D2yregmat[,ivar]
aa <- mean(y0i^2)
bb <- mean(y0i*yregmati)
cc <- mean( yregmati^2)
Dbb <- crossprod(Dywrtc, y0i)/nfine
Dcc <- 2.0 * crossprod(Dywrtc, yregmati)/nfine
D2bb <- matrix(0,npair,1)
D2cc <- matrix(0,npair,1)
crossprodmat <- matrix(0,nfine,npair)
DyD2hmat <- matrix(0,nfine,npair)
m <- 0
for (j in 1:wnbasis) {
for (k in 1:j) {
m <- m + 1
crossprodmat[,m] <- Dhfine[,j]*Dhfine[,k]*D2yregmati
DyD2hmat[,m] <- Dyregmati*D2hwrtc[,m]
temp <- crossprodmat[,m] + DyD2hmat[,m]
D2bb[m] <- mean(y0i*temp)
D2cc[m] <- 2*mean(yregmati*temp +
Dyregmati^2*Dhfine[,j]*Dhfine[,k])
}
}
ee <- aa + cc
ff <- aa - cc
ffsq <- ff*ff
dd <- sqrt(ffsq + 4*bb*bb)
ddsq <- dd*dd
ddcu <- ddsq*dd
m <- 0
for (j in 1:wnbasis) {
for (k in 1:j) {
m <- m + 1
hessvec[m] <- hessvec[m] + D2cc[m] -
(4*Dbb[j]*Dbb[k] + 4*bb*D2bb[m] + Dcc[j]*Dcc[k] -
ff* D2cc[m])/dd +
(4*bb*Dbb[j] - ff*Dcc[j])*(4*bb*Dbb[k] - ff*Dcc[k])/ddcu
}
}
}
}
hessmat <- matrix(0,wnbasis,wnbasis)
m <- 0
for (j in 1:wnbasis) {
for (k in 1:j) {
m <- m + 1
hessmat[j,k] <- hessvec[m]
hessmat[k,j] <- hessvec[m]
}
}
if (!is.null(Kmat)) {
if (wnbasis > 1) {
ind <- 2:wnbasis
hessmat[ind,ind] <- hessmat[ind,ind] + 2*Kmat
}
}
if (!periodic) {
hessmat[1,] <- 0
hessmat[,1] <- 0
hessmat[1,1] <- 1
}
return(hessmat)
}
# ----------------------------------------------------------------
regyfn <- function(xfine, yfine, hfine, yfd, Wfd, periodic)
{
#cat("\nregyfn")
coef <- Wfd$coefs
shift <- coef[1]
coef[1] <- 0
Wfd[[1]] <- coef
if (all(coef == 0)) {
if (periodic) {
if (shift == 0) {
yregfd <- yfd
return(yregfd)
}
} else {
yregfd <- yfd
return(yregfd)
}
}
# Estimate inverse of warping function at fine mesh of values
# 28 dec 000
# It makes no real difference which
# interpolation method is used here.
# Linear is faster and sure to be monotone.
# Using WARPSMTH added nothing useful, and was abandoned.
nfine <- length(xfine)
hinv <- approx(hfine, xfine, xfine)$y
hinv[1] <- xfine[1]
hinv[nfine] <- xfine[nfine]
# carry out shift if period and shift != 0
basis <- yfd$basis
rangex <- basis$rangeval
ydim <- dim(yfine)
#if (length(ydim) == 3) yfine <- yfine[,1,]
if (periodic & shift != 0) yfine <- shifty(xfine, yfine, shift)
# make FD object out of Y
ycoef <- project.basis(yfine, hinv, basis, 1)
yregfd <- fd(ycoef, basis)
return(yregfd)
}
# ----------------------------------------------------------------
linesearch <- function(Flist, hessmat, dbglev)
{
deltac <- -solve(hessmat,Flist$grad)
cosangle <- -sum(Flist$grad*deltac)/sqrt(sum(Flist$grad^2)*sum(deltac^2))
if (dbglev >= 2) cat(paste("\nCos(angle) = ",round(cosangle,2)))
if (cosangle < 1e-7) {
if (dbglev >=2) cat("\nangle negative")
deltac <- -Flist$grad
}
return(list(deltac, cosangle))
}
# ---------------------------------------------------------------------
shifty <- function(x, y, shift)
{
#SHIFTY estimates value of Y for periodic data for
# X shifted by amount SHIFT.
# It is assumed that X spans interval over which functionis periodic.
# Last modified 6 February 2001
ydim <- dim(y)
if (is.null(ydim)) ydim <- 1
if (length(ydim) > 3) stop("Y has more than three dimensions")
if (shift == 0) {
yshift <- y
return(yshift)
}
n <- ydim[1]
xlo <- min(x)
xhi <- max(x)
wid <- xhi - xlo
if (shift > 0) {
while (shift > xhi) shift <- shift - wid
ind <- 2:n
x2 <- c(x, x[ind]+wid)
xshift <- x + shift
if (length(ydim) == 1) {
y2 <- c(y, y[ind])
yshift <- approx(x2, y2, xshift)$y
}
if (length(ydim) == 2) {
nvar <- ydim[2]
yshift <- matrix(0,n,nvar)
for (ivar in 1:nvar) {
y2 <- c(y[,ivar], y[ind,ivar])
yshift[,ivar] <- approx(x2, y2, xshift)$y
}
}
if (length(ydim) == 3) {
nrep <- ydim[2]
nvar <- ydim[3]
yshift <- array(0,c(n,nrep,nvar))
for (irep in 1:nrep) for (ivar in 1:nvar) {
y2 <- c(y[,irep,ivar], y[ind,irep,ivar])
yshift[,irep,ivar] <- approx(x2, y2, xshift)$y
}
}
} else {
while (shift < xlo - wid) shift <- shift + wid
ind <- 1:(n-1)
x2 <- c(x[ind]-wid, x)
xshift <- x + shift
if (length(ydim) == 1) {
y2 <- c(y[ind], y)
yshift <- approx(x2, y2, xshift)$y
}
if (length(ydim) == 2) {
nvar <- ydim[2]
yshift <- matrix(0,n,nvar)
for (ivar in 1:nvar) {
y2 <- c(y[ind,ivar],y[,ivar])
yshift[,ivar] <- approx(x2, y2, xshift)$y
}
}
if (length(ydim) == 3) {
nrep <- ydim[2]
nvar <- ydim[3]
yshift <- array(0, c(n,nrep,nvar))
for (irep in 1:nrep) for (ivar in 1:nvar) {
y2 <- c(y[ind,irep,ivar], y[,irep,ivar])
yshift[,irep,ivar] <- approx(x2, y2, xshift)$y
}
}
}
return(yshift)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.