Nothing
adjustedRandIndex <- function (x, y)
{
x <- as.vector(x)
y <- as.vector(y)
if(length(x) != length(y))
stop("arguments must be vectors of the same length")
tab <- table(x,y)
if(all(dim(tab)==c(1,1))) return(1)
a <- sum(choose(tab, 2))
b <- sum(choose(rowSums(tab), 2)) - a
c <- sum(choose(colSums(tab), 2)) - a
d <- choose(sum(tab), 2) - a - b - c
ARI <- (a - (a + b) * (a + c)/(a + b + c + d)) /
((a + b + a + c)/2 - (a + b) * (a + c)/(a + b + c + d))
return(ARI)
}
classError <- function(classification, class)
{
q <- function(map, len, x)
{
x <- as.character(x)
map <- lapply(map, as.character)
y <- sapply(map, function(x) x[1])
best <- y != x
if(all(len) == 1)
return(best)
errmin <- sum(as.numeric(best))
z <- sapply(map, function(x) x[length(x)])
mask <- len != 1
counter <- rep(0, length(len))
k <- sum(as.numeric(mask))
j <- 0
while(y != z)
{
i <- k - j
m <- mask[i]
counter[m] <- (counter[m] %% len[m]) + 1
y[x == names(map)[m]] <- map[[m]][counter[m]]
temp <- y != x
err <- sum(as.numeric(temp))
if(err < errmin)
{
errmin <- err
best <- temp
}
j <- (j + 1) %% k
}
best
}
if(any(isNA <- is.na(classification)))
{
classification <- as.character(classification)
nachar <- paste(unique(classification[!isNA]),collapse="")
classification[isNA] <- nachar
}
MAP <- mapClass(classification, class)
len <- sapply(MAP[[1]], length)
if(all(len) == 1)
{
CtoT <- unlist(MAP[[1]])
I <- match(as.character(classification), names(CtoT), nomatch= 0)
one <- CtoT[I] != class
} else
{
one <- q(MAP[[1]], len, class)
}
len <- sapply(MAP[[2]], length)
if(all(len) == 1)
{
TtoC <- unlist(MAP[[2]])
I <- match(as.character(class), names(TtoC), nomatch = 0)
two <- TtoC[I] != classification
} else
{
two <- q(MAP[[2]], len, classification)
}
err <- if(sum(as.numeric(one)) > sum(as.numeric(two)))
as.vector(one) else as.vector(two)
bad <- seq(along = classification)[err]
list(misclassified = bad, errorRate = length(bad)/length(class))
}
mapClass <- function(a, b)
{
l <- length(a)
x <- y <- rep(NA, l)
if(l != length(b))
{
warning("unequal lengths")
return(x)
}
# LS: new - check if both a & b are factors or character vectors
# with the same levels then assume they are known classes and
# match by level names
if(is.factor(a) & is.factor(b) & nlevels(a) == nlevels(b))
{
aTOb <- as.list(levels(b))
names(aTOb) <- levels(a)
bTOa <- as.list(levels(a))
names(bTOa) <- levels(b)
out <- list(aTOb = aTOb, bTOa = bTOa)
return(out)
}
if(is.character(a) & is.character(b) &
length(unique(a)) == length(unique(b)))
{
aTOb <- as.list(unique(b))
names(aTOb) <- unique(a)
bTOa <- as.list(unique(a))
names(bTOa) <- unique(b)
out <- list(aTOb = aTOb, bTOa = bTOa)
return(out)
}
# otherwise match by closest class correspondence
Tab <- table(a, b)
Ua <- dimnames(Tab)[[1]]
Ub <- dimnames(Tab)[[2]]
aTOb <- rep(list(Ub), length(Ua))
names(aTOb) <- Ua
bTOa <- rep(list(Ua), length(Ub))
names(bTOa) <- Ub
#
k <- nrow(Tab)
Map <- rep(0, k)
Max <- apply(Tab, 1, max)
for(i in 1:k)
{
I <- match(Max[i], Tab[i, ], nomatch = 0)
aTOb[[i]] <- Ub[I]
}
if(is.numeric(b))
aTOb <- lapply(aTOb, as.numeric)
#
k <- ncol(Tab)
Map <- rep(0, k)
Max <- apply(Tab, 2, max)
for(j in (1:k)) {
J <- match(Max[j], Tab[, j])
bTOa[[j]] <- Ua[J]
}
if(is.numeric(a))
bTOa <- lapply(bTOa, as.numeric)
#
out <- list(aTOb = aTOb, bTOa = bTOa)
return(out)
}
map <- function(z, warn = mclust.options("warn"), ...)
{
nrowz <- nrow(z)
cl <- numeric(nrowz)
I <- 1:nrowz
J <- 1:ncol(z)
for(i in I)
{ cl[i] <- (J[z[i, ] == max(z[i, ])])[1] }
if(warn)
{ K <- as.logical(match(J, sort(unique(cl)), nomatch = 0))
if(any(!K))
warning(paste("no assignment to", paste(J[!K],
collapse = ",")))
}
return(cl)
}
unmap <- function(classification, groups=NULL, noise=NULL, ...)
{
# converts a classification to conditional probabilities
# classes are arranged in sorted order unless groups is specified
# if a noise indicator is specified, that column is placed last
n <- length(classification)
u <- sort(unique(classification))
if(is.null(groups))
{ groups <- u }
else
{ if(any(match( u, groups, nomatch = 0) == 0))
stop("groups incompatible with classification")
miss <- match( groups, u, nomatch = 0) == 0
}
cgroups <- as.character(groups)
if(!is.null(noise))
{ noiz <- match( noise, groups, nomatch = 0)
if(any(noiz == 0)) stop("noise incompatible with classification")
groups <- c(groups[groups != noise],groups[groups==noise])
noise <- as.numeric(factor(as.character(noise), levels = unique(groups)))
}
groups <- as.numeric(factor(cgroups, levels = unique(cgroups)))
classification <- as.numeric(factor(as.character(classification), levels = unique(cgroups)))
k <- length(groups) - length(noise)
nam <- levels(groups)
if(!is.null(noise))
{ k <- k + 1
nam <- nam[1:k]
nam[k] <- "noise"
}
z <- matrix(0, n, k, dimnames = c(names(classification),nam))
for(j in 1:k)
{ z[classification == groups[j], j] <- 1 }
return(z)
}
BrierScore <- function(z, class)
{
z <- as.matrix(z)
z <- sweep(z, 1, STATS = rowSums(z), FUN = "/")
cl <- unmap(class, groups = if(is.factor(class)) levels(class) else NULL)
if(any(dim(cl) != dim(z)))
stop("input arguments do not match!")
sum((cl-z)^2)/(2*nrow(cl))
}
orth2 <- function (n)
{
u <- rnorm(n)
u <- u/vecnorm(u)
v <- rnorm(n)
v <- v/vecnorm(v)
Q <- cbind(u, v - sum(u * v) * u)
dimnames(Q) <- NULL
Q
}
randomOrthogonalMatrix <- function(nrow, ncol, n = nrow, d = ncol, seed = NULL)
{
# Generate a random orthogonal basis matrix of dimension (nrow x ncol) using
# the algorithm in
# Heiberger R. (1978) Generation of random orthogonal matrices. JRSS C, 27,
# 199-206.
if(!is.null(seed)) set.seed(seed)
if(missing(nrow) & missing(n)) stop()
if(missing(nrow))
{
warning("Use of argument 'n' is deprecated. Please use 'nrow'")
nrow <- n
}
if(missing(ncol) & missing(d)) stop()
if(missing(ncol))
{
warning("Use of argument 'd' is deprecated. Please use 'ncol'")
ncol <- d
}
Q <- qr.Q(qr(matrix(rnorm(nrow*ncol), nrow = nrow, ncol = ncol)))
return(Q)
}
# TODO: to be removed at a certain point
# logsumexp_old <- function(x)
# {
# # Numerically efficient implementation of log(sum(exp(x)))
# max <- max(x)
# max + log(sum(exp(x-max)))
# }
logsumexp <- function(x, v = NULL)
{
# Numerically efficient implementation of
# log-sum-exp(x_i+v) for i = 1,...,n
# via Fortran call
x <- if(is.null(dim(x))) matrix(x, nrow = 1) else as.matrix(x)
n <- nrow(x)
k <- ncol(x)
v <- if(is.null(v)) double(k) else as.vector(v)
stopifnot(length(v) == k)
.Fortran("logsumexp",
x = x, n = as.integer(n), k = as.integer(k), v = v,
lse = double(n))$lse
}
softmax <- function(x, v = NULL)
{
# Efficiently computes softmax function based on
# log-sum-exp(x_i+v) for i = 1,...,n
# via Fortran call such that the output matrix z (n x k) has
# rowsum(z_j) = 1 for j = 1,...,k
#
x <- if(is.null(dim(x))) matrix(x, nrow = 1) else as.matrix(x)
n <- nrow(x)
k <- ncol(x)
v <- if(is.null(v)) double(k) else as.vector(v)
stopifnot(length(v) == k)
z <- .Fortran("softmax",
x = x, n = as.integer(n), k = as.integer(k),
v = as.double(v), lse = double(n), z = double(n * k))$z
z <- matrix(z, nrow = n, ncol = k)
return(z)
}
partconv <- function(x, consec = TRUE)
{
n <- length(x)
y <- numeric(n)
u <- unique(x)
if(consec) {
# number groups in order of first row appearance
l <- length(u)
for(i in 1:l)
y[x == u[i]] <- i
}
else {
# represent each group by its lowest-numbered member
for(i in u) {
l <- x == i
y[l] <- (1:n)[l][1]
}
}
y
}
partuniq <- function(x)
{
# finds the classification that removes duplicates from x
charconv <- function(x, sep = "001")
{
if(!is.data.frame(x)) x <- data.frame(x)
do.call("paste", c(as.list(x), sep = sep))
}
n <- nrow(x)
x <- charconv(x)
k <- duplicated(x)
partition <- 1.:n
partition[k] <- match(x[k], x)
partition
}
dmvnorm <- function(data, mean, sigma, log = FALSE)
{
data <- as.matrix(data)
n <- nrow(data)
d <- ncol(data)
if(missing(mean))
mean <- rep(0, length = d)
mean <- as.vector(mean)
if(length(mean) != d)
stop("data and mean have non-conforming size")
if(missing(sigma))
sigma <- diag(d)
sigma <- as.matrix(sigma)
if(ncol(sigma) != d)
stop("data and sigma have non-conforming size")
if(max(abs(sigma - t(sigma))) > sqrt(.Machine$double.eps))
stop("sigma must be a symmetric matrix")
# - 1st approach
# cholsigma <- chol(sigma)
# logdet <- 2 * sum(log(diag(cholsigma)))
# md <- mahalanobis(data, center = mean,
# cov = chol2inv(cholsigma), inverted = TRUE)
# logdens <- -(ncol(data) * log(2 * pi) + logdet + md)/2
#
# - 2nd approach
# cholsigma <- chol(sigma)
# logdet <- 2 * sum(log(diag(cholsigma)))
# mean <- outer(rep(1, nrow(data)), as.vector(matrix(mean,d)))
# data <- t(data - mean)
# conc <- chol2inv(cholsigma)
# Q <- colSums((conc %*% data)* data)
# logdens <- as.vector(Q + d*log(2*pi) + logdet)/(-2)
#
# - 3rd approach (via Fortran code)
logdens <- .Fortran("dmvnorm",
as.double(data), # x
as.double(mean), # mu
as.double(sigma), # Sigma
as.integer(n), # n
as.integer(d), # p
double(d), # w
double(1), # hood
double(n), # logdens
PACKAGE = "mclust")[[8]]
#
if(log) logdens else exp(logdens)
}
shapeO <- function(shape, O, transpose = FALSE)
{
dimO <- dim(O)
if(dimO[1] != dimO[2])
stop("leading dimensions of O are unequal")
if((ldO <- length(dimO)) != 3) {
if(ldO == 2) {
dimO <- c(dimO, 1)
O <- array(O, dimO)
}
else stop("O must be a matrix or an array")
}
l <- length(shape)
if(l != dimO[1])
stop("dimension of O and length s are unequal")
storage.mode(O) <- "double"
.Fortran("shapeo",
as.logical(transpose),
as.double(shape),
O,
as.integer(l),
as.integer(dimO[3]),
double(l * l),
integer(1),
PACKAGE = "mclust")[[3]]
}
traceW <- function(x)
{
# sum(as.vector(sweep(x, 2, apply(x, 2, mean)))^2)
dimx <- dim(x)
n <- dimx[1]
p <- dimx[2]
.Fortran("mcltrw",
as.double(x),
as.integer(n),
as.integer(p),
double(p),
double(1),
PACKAGE = "mclust")[[5]]
}
unchol <- function(x, upper = NULL)
{
if(is.null(upper)) {
upper <- any(x[row(x) < col(x)])
lower <- any(x[row(x) > col(x)])
if(upper && lower)
stop("not a triangular matrix")
if(!(upper || lower)) {
x <- diag(x)
return(diag(x * x))
}
}
dimx <- dim(x)
storage.mode(x) <- "double"
.Fortran("uncholf",
as.logical(upper),
x,
as.integer(nrow(x)),
as.integer(ncol(x)),
integer(1),
PACKAGE = "mclust")[[2]]
}
vecnorm <- function (x, p = 2)
{
if (is.character(p)) {
if (charmatch(p, "maximum", nomatch = 0) == 1)
p <- Inf
else if (charmatch(p, "euclidean", nomatch = 0) == 1)
p <- 2
else stop("improper specification of p")
}
if (!is.numeric(x) && !is.complex(x))
stop("mode of x must be either numeric or complex")
if (!is.numeric(p))
stop("improper specification of p")
if (p < 1)
stop("p must be greater than or equal to 1")
if (is.numeric(x))
x <- abs(x)
else x <- Mod(x)
if (p == 2)
return(.Fortran("d2norm", as.integer(length(x)), as.double(x),
as.integer(1), double(1), PACKAGE = "mclust")[[4]])
if (p == Inf)
return(max(x))
if (p == 1)
return(sum(x))
xmax <- max(x)
if (!xmax)
xmax <- max(x)
if (!xmax)
return(xmax)
x <- x/xmax
xmax * sum(x^p)^(1/p)
}
errorBars <- function(x, upper, lower, width = 0.1, code = 3, angle = 90, horizontal = FALSE, ...)
{
# Draw error bars at x from upper to lower. If horizontal = FALSE (default)
# bars are drawn vertically, otherwise horizontally.
if(horizontal)
arrows(upper, x, lower, x, length = width, angle = angle, code = code, ...)
else
arrows(x, upper, x, lower, length = width, angle = angle, code = code, ...)
}
covw <- function(X, Z, normalize = TRUE)
# Given data matrix X(n x p) and weight matrix Z(n x G) computes
# weighted means(p x G), weighted covariance matrices S(p x p x G) and
# weighted scattering matrices W(p x p x G)
{
X <- as.matrix(X)
Z <- as.matrix(Z)
n <- nrow(X)
p <- ncol(X)
nZ <- nrow(Z)
G <- ncol(Z)
if(n != nZ)
stop("X and Z must have same number of rows")
if(normalize)
Z <- t( apply(Z, 1, function(z) z/sum(z)) )
tmp <- .Fortran("covwf",
X = as.double(X),
Z = as.double(Z),
n = as.integer(n),
p = as.integer(p),
G = as.integer(G),
mean = double(p*G),
S = double(p*p*G),
W = double(p*p*G),
PACKAGE = "mclust")
out <- list(mean = matrix(tmp$mean, p,G),
S = array(tmp$S, c(p,p,G)),
W = array(tmp$W, c(p,p,G)) )
return(out)
}
hdrlevels <- function(density, prob)
{
# Compute the levels for Highest Density Levels (HDR) for estimated 'density'
# values and probability levels 'prob'.
#
# Reference: Hyndman (1996) Computing and Graphing Highest Density Regions
if(missing(density) | missing(prob))
stop("Please provide both 'density' and 'prob' arguments to function call!")
density <- as.vector(density)
prob <- pmin(pmax(as.numeric(prob), 0), 1)
alpha <- 1-prob
lev <- quantile(density, alpha, na.rm = TRUE)
names(lev) <- paste0(round(prob*100),"%")
return(lev)
}
nclass.numpy <- function(x, ...)
{
#' Compute the number of classes for a histogram as the maximum of the
#' "Sturges" and "FD" (Freedman Diaconis) estimators as in numpy library
#' for Python.
#' x: a vector of values
#'
#' Example:
#' x <- rnorm(100)
#' hist(x, breaks = nclass.numpy(x))
#' x <- rnorm(1000)
#' hist(x, breaks = nclass.numpy(x))
#' n = c(50, seq(100,1000,by=100))
#' brks = rep(NA, length(n))
#' for(i in seq(n)) brks[i] = nclass.numpy(rnorm(n[i]))
#' plot(n, brks)
#'
x <- as.vector(x)
max(nclass.Sturges(x), nclass.FD(x))
}
catwrap <- function(x, width = getOption("width"), ...)
{
# version of cat with wrapping at specified width
cat(paste(strwrap(x, width = width, ...), collapse = "\n"), "\n")
}
##
## Convert to a from classes 'Mclust' and 'densityMclust'
##
as.Mclust <- function(x, ...)
{
UseMethod("as.Mclust")
}
as.Mclust.default <- function(x, ...)
{
if(inherits(x, "Mclust")) x
else stop("argument 'x' cannot be coerced to class 'Mclust'")
}
as.Mclust.densityMclust <- function(x, ...)
{
class(x) <- c("Mclust", class(x)[1])
return(x)
}
as.densityMclust <- function(x, ...)
{
UseMethod("as.densityMclust")
}
as.densityMclust.default <- function(x, ...)
{
if(inherits(x, "densityMclust")) x
else stop("argument 'x' cannot be coerced to class 'densityMclust'")
}
as.densityMclust.Mclust <- function(x, ...)
{
class(x) <- c("densityMclust", class(x))
x$density <- dens(data = x$data, modelName = x$modelName,
parameters = x$parameters, logarithm = FALSE)
return(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.