Nothing
#' Cumulative meta-analysis
#'
#' @description
#' Performs a cumulative meta-analysis.
#'
#' @param x An object of class \code{meta}.
#' @param pooled A character string indicating whether a common effect
#' or random effects model is used for pooling. Either missing (see
#' Details), \code{"common"}, or \code{"random"}, can be abbreviated.
#' @param sortvar An optional vector used to sort the individual
#' studies (must be of same length as \code{x$TE}).
#' @param no A numeric specifying which meta-analysis results to
#' consider.
#' @param \dots Additional arguments (ignored).
#'
#' @details
#' A cumulative meta-analysis is performed. Studies are included
#' sequentially as defined by \code{sortvar}.
#'
#' Information from object \code{x} is utilised if argument
#' \code{pooled} is missing. A common effect model is assumed
#' (\code{pooled = "common"}) if argument \code{x$common} is
#' \code{TRUE}; a random effects model is assumed (\code{pooled =
#' "random"}) if argument \code{x$random} is \code{TRUE} and
#' \code{x$common} is \code{FALSE}.
#'
#' @return
#' An object of class \code{"meta"} and \code{"metacum"} with
#' corresponding generic functions (see \code{\link{meta-object}}).
#'
#' The following list elements have a different meaning:
#' \item{TE, seTE}{Estimated treatment effect and standard error of
#' pooled estimate in cumulative meta-analyses.}
#' \item{lower, upper}{Lower and upper confidence interval limits.}
#' \item{statistic}{Statistic for test of overall effect.}
#' \item{pval}{P-value for test of overall effect.}
#' \item{studlab}{Study label describing addition of studies.}
#' \item{w}{Sum of weights from common effect or random effects model.}
#' \item{TE.common, seTE.common}{Value is \code{NA}.}
#' \item{TE.random, seTE.random}{Value is \code{NA}.}
#' \item{Q}{Value is \code{NA}.}
#'
#' @author Guido Schwarzer \email{guido.schwarzer@@uniklinik-freiburg.de}
#'
#' @seealso \code{\link{metabin}}, \code{\link{metacont}},
#' \code{\link{print.meta}}
#'
#' @references
#' Cooper H & Hedges LV (1994):
#' \emph{The Handbook of Research Synthesis}.
#' Newbury Park, CA: Russell Sage Foundation
#'
#' @examples
#' data(Fleiss1993bin)
#' m1 <- metabin(d.asp, n.asp, d.plac, n.plac,
#' data = Fleiss1993bin, studlab = study, sm = "RR", method = "I")
#' m1
#' metacum(m1)
#' metacum(m1, pooled = "random")
#'
#' forest(metacum(m1))
#' forest(metacum(m1, pooled = "random"))
#'
#' metacum(m1, sortvar = study)
#' metacum(m1, sortvar = 7:1)
#'
#' m2 <- update(m1, title = "Fleiss1993bin meta-analysis", backtransf = FALSE)
#' metacum(m2)
#'
#' data(Fleiss1993cont)
#' m3 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
#' data = Fleiss1993cont, sm = "SMD")
#' metacum(m3)
#'
#' @rdname metacum
#' @method metacum meta
#' @export
metacum.meta <- function(x, pooled, sortvar, no = 1, ...) {
##
##
## (1) Check for meta object and upgrade older meta objects
##
##
chkclass(x, "meta")
chksuitable(x, "Cumulative meta-analysis", c("metamerge", "netpairwise"))
##
x <- updateversion(x)
##
k.all <- length(x$TE)
if (k.all < 2) {
warning("Nothing calculated (minimum number of studies: 2).")
return(invisible(NULL))
}
##
##
## (2) Check other arguments
##
##
if (!missing(pooled)) {
pooled <- setchar(pooled, c("common", "random", "fixed"))
pooled[pooled == "fixed"] <- "common"
}
else
if (!x$common & x$random)
pooled <- "random"
else
pooled <- "common"
##
mc <- match.call()
error <-
try(sortvar <-
catch("sortvar", mc, x, sys.frame(sys.parent())),
silent = TRUE)
if (inherits(error, "try-error")) {
sortvar <- catch("sortvar", mc, x$data, NULL)
if (isCol(x$data, ".subset"))
sortvar <- sortvar[x$data$.subset]
}
sort <- !is.null(sortvar)
if (sort && (length(sortvar) != k.all))
stop("Number of studies in object 'x' and argument 'sortvar' ",
"have different length.")
if (!sort)
sortvar <- 1:k.all
##
##
## (3) Sort variables
##
##
o <- order(sortvar)
##
n.e <- x$n.e[o]
n.c <- x$n.c[o]
n <- x$n[o]
##
event.e <- x$event.e[o]
event.c <- x$event.c[o]
event <- x$event[o]
##
mean.e <- x$mean.e[o]
mean.c <- x$mean.c[o]
mean <- x$mean[o]
##
sd.e <- x$sd.e[o]
sd.c <- x$sd.c[o]
sd <- x$sd[o]
##
time.e <- x$time.e[o]
time.c <- x$time.c[o]
time <- x$time[o]
##
cor <- x$cor[o]
##
TE <- x$TE[o]
seTE <- x$seTE[o]
##
if (length(x$incr) > 1)
incr <- x$incr[o]
else if (!is.null(x$incr))
incr <- rep_len(x$incr, k.all)
else
incr <- x$incr
##
## Exclude studies from meta-analysis
##
if (!is.null(x$exclude))
exclude <- x$exclude[o]
else
exclude <- rep_len(FALSE, k.all)
##
ncum <- cumsum(!exclude)
##
studlab <- x$studlab[o]
slab <- character(k.all)
for (i in 1:k.all)
slab[i] <- paste0("Adding ", studlab[i], " (k=", ncum[i], ")")
slab <- c(slab, "Pooled estimate")
studlab <- c(rev(rev(slab)[-1]), " ", rev(slab)[1])
##
chknumeric(no, min = 1, length = 1)
##
## Select a single common effect or random effects models
##
if (pooled == "common") {
if (no > length(x$seTE.common))
stop("Argument 'no' must be smaller or equal to ",
"number of common effect estimates.",
call. = FALSE)
##
no.c <- no
no.r <- 1
}
else {
if (no > length(x$seTE.random))
stop("Argument 'no' must be smaller or equal to ",
"number of random effects estimates.",
call. = FALSE)
##
no.c <- 1
no.r <- no
}
##
x$TE.common <- x$TE.common[no.c]
x$seTE.common <- x$seTE.common[no.c]
x$statistic.common <- x$statistic.common[no.c]
x$pval.common <- x$pval.common[no.c]
x$lower.common <- x$lower.common[no.c]
x$upper.common <- x$upper.common[no.c]
x$zval.common <- x$zval.common[no.c]
##
if (length(x$TE.random) == 1 &&
length(x$TE.random) != length(x$seTE.random))
x$TE.random <- rep_len(x$TE.random, length(x$seTE.random))
x$TE.random <- x$TE.random[no.r]
x$seTE.random <- x$seTE.random[no.r]
x$df.random <- x$df.random[no.r]
x$statistic.random <- x$statistic.random[no.r]
x$pval.random <- x$pval.random[no.r]
x$lower.random <- x$lower.random[no.r]
x$upper.random <- x$upper.random[no.r]
x$zval.random <- x$zval.random[no.r]
x$seTE.hakn.adhoc.ci <- x$seTE.hakn.adhoc.ci[no.r]
x$df.hakn.ci <- x$df.hakn.ci[no.r]
##
x$text.random <- x$text.random[no.r]
x$method.random.ci <- x$method.random.ci[no.r]
x$adhoc.hakn.ci <- x$adhoc.hakn.ci[no.r]
##
x$seTE.hakn.adhoc <- x$seTE.hakn.adhoc[no.r]
x$df.hakn <- x$df.hakn[no.r]
##
x$lower.predict <- x$lower.predict[1]
x$upper.predict <- x$upper.predict[1]
x$seTE.predict <- x$seTE.predict[1]
x$df.predict <- x$df.predict[1]
x$seTE.hakn.adhoc.pi <- x$seTE.hakn.adhoc.pi[1]
x$df.hakn.pi <- x$df.hakn.pi[1]
##
x$text.predict <- x$text.predict[1]
x$method.predict <- x$method.predict[1]
x$adhoc.hakn.pi <- x$adhoc.hakn.pi[1]
##
##
## (4) Do sensitivity analysis
##
##
res.i <- matrix(NA, ncol = 21, nrow = k.all)
add.i <- matrix(NA, ncol = 3, nrow = k.all)
##
for (i in 1:k.all) {
sel <- 1:i
##
if (length(incr) > 1)
incr.i <- incr[sel]
else
incr.i <- incr
##
if (inherits(x, "metabin"))
m <- metabin(event.e[sel], n.e[sel], event.c[sel], n.c[sel],
##
exclude = exclude[sel],
##
method = x$method, sm = x$sm,
##
incr = incr.i, method.incr = x$method.incr,
allstudies = x$allstudies, MH.exact = x$MH.exact,
RR.Cochrane = x$RR.Cochrane, Q.Cochrane = x$Q.Cochrane,
model.glmm =
if (!is.null(x$model.glmm)) x$model.glmm else "UM.FS",
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
##
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x, "metacont"))
m <- metacont(n.e[sel], mean.e[sel], sd.e[sel],
n.c[sel], mean.c[sel], sd.c[sel],
##
exclude = exclude[sel],
##
sm = x$sm,
pooledvar = replaceNA(x$pooledvar, gs("pooledvar")),
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
##
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x, "metacor"))
m <- metacor(cor[sel], n[sel],
##
exclude = exclude[sel],
##
sm = x$sm, null.effect = x$null.effect,
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
##
keepdata = FALSE,
##
control = x$control)
##
if (inherits(x, "metagen"))
m <- metagen(TE[sel], seTE[sel],
##
exclude = exclude[sel],
##
sm = x$sm, null.effect = x$null.effect,
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
##
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x,"metainc"))
m <- metainc(event.e[sel], time.e[sel],
event.c[sel], time.c[sel],
##
exclude = exclude[sel],
##
method = x$method, sm = x$sm,
incr = incr.i, method.incr = x$method.incr,
model.glmm =
if (!is.null(x$model.glmm)) x$model.glmm else "UM.FS",
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
##
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x, "metamean"))
m <- metamean(n[sel], mean[sel], sd[sel],
##
exclude = exclude[sel],
##
sm = x$sm, null.effect = x$null.effect,
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
##
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x, "metaprop"))
m <- metaprop(event[sel], n[sel],
##
exclude = exclude[sel],
##
method = x$method, sm = x$sm, null.effect = x$null.effect,
##
incr = incr.i, method.incr = x$method.incr,
method.ci = x$method.ci,
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
##
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x, "metarate"))
m <- metarate(event[sel], time[sel],
##
exclude = exclude[sel],
##
method = x$method, sm = x$sm, null.effect = x$null.effect,
##
incr = incr.i, method.incr = x$method.incr,
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
##
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
sel.pft <- inherits(x, "metaprop") & x$sm == "PFT"
sel.irft <- inherits(x, "metarate") & x$sm == "IRFT"
##
add.i[i, ] <- c(m$method.tau.ci, # 1
m$sign.lower.tau, # 2
m$sign.upper.tau # 3
)
##
if (pooled == "common") {
res.i[i, ] <- c(m$TE.common, # 1
m$seTE.common, # 2
m$lower.common, # 3
m$upper.common, # 4
m$statistic.common, # 5
m$pval.common, # 6
m$tau2, # 7
m$lower.tau2, # 8
m$upper.tau2, # 9
m$se.tau2, # 10
m$tau, # 11
m$lower.tau, # 12
m$upper.tau, # 13
m$I2, # 14
m$lower.I2, # 15
m$upper.I2, # 16
sum(m$w.common, na.rm = TRUE), # 17
if (sel.pft) 1 / mean(1 / n[sel]) else NA, # 18
NA, # 19
if (sel.irft) 1 / mean(1 / time[sel]) else NA, # 20
m$Rb # 21
)
}
##
else if (pooled == "random") {
res.i[i, ] <- c(m$TE.random, # 1
m$seTE.random, # 2
m$lower.random, # 3
m$upper.random, # 4
m$statistic.random, # 5
m$pval.random, # 6
m$tau2, # 7
m$lower.tau2, # 8
m$upper.tau2, # 9
m$se.tau2, # 10
m$tau, # 11
m$lower.tau, # 12
m$upper.tau, # 13
m$I2, # 14
m$lower.I2, # 15
m$upper.I2, # 16
sum(m$w.random, na.rm = TRUE), # 17
if (sel.pft) 1 / mean(1 / n[sel]) else NA, # 18
if (x$method.random.ci %in% c("HK", "KR")) #
m$df.random else NA, # 19
if (sel.irft) 1 / mean(1 / time[sel]) else NA, # 20
m$Rb # 21
)
}
}
##
TE.i <- res.i[, 1]
seTE.i <- res.i[, 2]
lower.i <- res.i[, 3]
upper.i <- res.i[, 4]
statistic.i <- res.i[, 5]
pval.i <- res.i[, 6]
##
tau2.i <- res.i[, 7]
lower.tau2.i <- res.i[, 8]
upper.tau2.i <- res.i[, 9]
se.tau2.i <- res.i[, 10]
##
tau.i <- res.i[, 11]
lower.tau.i <- res.i[, 12]
upper.tau.i <- res.i[, 13]
##
I2.i <- res.i[, 14]
lower.I2.i <- res.i[, 15]
upper.I2.i <- res.i[, 16]
##
weight.i <- res.i[, 17]
n.harmonic.mean.i <- res.i[, 18]
if (pooled == "random" & x$method.random.ci %in% c("HK", "KR"))
df.random.i <- res.i[, 19]
t.harmonic.mean.i <- res.i[, 20]
Rb.i <- res.i[, 21]
##
method.tau.ci <- unique(add.i[, 1])
sign.lower.tau.i <- add.i[, 2]
sign.upper.tau.i <- add.i[, 3]
##
if (pooled == "common") {
TE.s <- x$TE.common
seTE.s <- x$seTE.common
lower.TE.s <- x$lower.common
upper.TE.s <- x$upper.common
statistic.s <- x$statistic.common
pval.s <- x$pval.common
w.s <- sum(x$w.common, na.rm = TRUE)
}
##
else if (pooled == "random") {
TE.s <- x$TE.random
seTE.s <- x$seTE.random
lower.TE.s <- x$lower.random
upper.TE.s <- x$upper.random
statistic.s <- x$statistic.random
pval.s <- x$pval.random
w.s <- sum(x$w.random, na.rm = TRUE)
}
##
##
## (5) Generate R object
##
##
res <- list(studlab = studlab,
##
sm = x$sm,
null.effect = x$null.effect,
##
TE = c(TE.i, NA, TE.s),
seTE = c(seTE.i, NA, seTE.s),
statistic = c(statistic.i, NA, statistic.s),
pval = c(pval.i, NA, pval.s),
level = x$level.ma,
lower = c(lower.i, NA, lower.TE.s),
upper = c(upper.i, NA, upper.TE.s),
##
three.level = x$three.level,
cluster = x$cluster, rho = x$rho,
##
k = x$k, k.study = x$k.study, k.all = x$k.all, k.TE = x$k.TE,
##
pooled = pooled,
common = ifelse(pooled == "common", TRUE, FALSE),
random = ifelse(pooled == "random", TRUE, FALSE),
overall = TRUE,
overall.hetstat = TRUE,
prediction = FALSE,
method.predict = x$method.predict,
backtransf = x$backtransf,
##
method = x$method,
method.random = x$method.random,
##
w = c(weight.i, NA, w.s),
TE.common = NA, seTE.common = NA,
TE.random = NA, seTE.random = NA,
df.random =
if (pooled == "random" &
x$method.random.ci %in% c("HK", "KR"))
c(df.random.i, NA, x$df.random) else NULL,
level.ma = x$level.ma,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
##
Q = NA,
##
method.tau = x$method.tau,
method.tau.ci = method.tau.ci,
tau2 = c(tau2.i, NA, x$tau2),
se.tau2 = c(se.tau2.i, NA, x$se.tau2),
lower.tau2 = c(lower.tau2.i, NA, x$lower.tau2),
upper.tau2 = c(upper.tau2.i, NA, x$upper.tau2),
tau = c(tau.i, NA, x$tau),
lower.tau = c(lower.tau.i, NA, x$lower.tau),
upper.tau = c(upper.tau.i, NA, x$upper.tau),
tau.preset = x$tau.preset,
TE.tau = x$TE.tau,
sign.lower.tau.i = c(sign.lower.tau.i, NA, x$sign.lower.tau),
sign.upper.tau.i = c(sign.upper.tau.i, NA, x$sign.upper.tau),
#
method.I2 = x$method.I2,
#
I2 = c(I2.i, NA, x$I2),
lower.I2 = c(lower.I2.i, NA, x$lower.I2),
upper.I2 = c(upper.I2.i, NA, x$upper.I2),
##
Rb = c(Rb.i, NA, x$Rb),
##
n.harmonic.mean = c(n.harmonic.mean.i, NA, 1 / mean(1 / n)),
t.harmonic.mean = c(t.harmonic.mean.i, NA, 1 / mean(1 / time)),
##
pscale = x$pscale,
irscale = x$irscale, irunit = x$irunit,
#
label.e = x$label.e,
label.c = x$label.c,
#
text.common = x$text.common, text.random = x$text.random,
text.predict = x$text.predict,
text.w.common = x$text.w.common, text.w.random = x$text.w.random,
##
title = x$title, complab = x$complab,
outclab = x$outclab,
##
no = no,
##
x = x,
##
call = match.call())
res$version <- packageDescription("meta")$Version
##
res$x$common <- res$common
res$x$random <- res$random
##
## Backward compatibility
##
res$fixed <- res$x$fixed <- res$common
res$TE.fixed <- res$TE.common
res$seTE.fixed <- res$seTE.common
##
res$text.fixed <- res$text.common
res$text.w.fixed <- res$text.w.common
class(res) <- c("metacum", "summary.meta", "meta")
##
if (inherits(x, "trimfill"))
class(res) <- c(class(res), "trimfill")
res
}
#' @rdname metacum
#' @export metacum
metacum <- function(x, ...)
UseMethod("metacum")
#' @rdname metacum
#' @method metacum default
#' @export
metacum.default <- function(x, ...)
stop("Cumulative meta-analysis not available for an object of class '",
class(x)[1], "'.",
call. = FALSE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.