R/graphics.R

Defines functions infoplot piplot curveplot profileplot hclrainbow

Documented in curveplot infoplot piplot profileplot

## convenience function for rainbow in HCL space
hclrainbow <- function(n) hcl(h = seq(0, 360 * (n - 1) / n, length = n), c = 80, l = 60)

## region plot graphic function
regionplot <- function (object, parg = list(type = NULL, ref = NULL, alias = TRUE),
  names = TRUE, main = NULL, xlab = "", ylab = "Latent trait", ylim = NULL,
  off = 0.1, col = NULL, linecol = 2, srt = 45, adj = c(1.1, 1.1), axes = TRUE, ...)
{
  ## process parg list
  type <- parg$type
  ref <- parg$ref
  alias  <- if (is.null(parg$alias)) TRUE else parg$alias

  ## fetch requested threshold parameters
  tp <- threshpar(object, type = type, ref = ref, alias = alias, vcov = FALSE)

  ## process argument 'col'
  oj <- sapply(tp, function (j) sum(!is.na(j)))
  if (is.null(col)) {
      cols <- lapply(oj, function (j) gray.colors((j + 1)))
  } else if (is.character(col)) {
      stopifnot(length(col) == (max(oj) + 1))
      cols <- lapply(oj, function (j) col[1:(j + 1)])
  } else if (is.list(col)) {
      stopifnot(length(col) == length(oj))
      oj2 <- lapply(col, function (j) length(j))
      stopifnot(all(oj2 >= oj + 1))
      cols <- col
  } else if (is.function(col)) {
      cols <- lapply(oj, function (j) col(j + 1))
  } else stop("Argument 'col' is misspecified (see ?regionplot for possible values).")

  ## setup par, number of items, axis labels
  ## opar <- par(mar = c(4.25, 4.25, if (is.null(main)) 1 else 3, 2.5))
  m <- length(tp)
  if (isTRUE(names)) {
    nms <- names(tp)
    if(is.null(nms)) nms <- paste0("Item", formatC(1:m, width = nchar(m), digits = 0, flag = "0"))
  }
  if (is.character(names)) {
    stopifnot(length(names) == m)
    nms <- names
    names <- TRUE
  }
  if(!names) {
    lab <- rep(NA, m)
    lab[c(1, m)] <- c(1, m)
    pr <- pretty(1:m)
    pr <- pr[pr > 1 & pr < m]
    lab[pr] <- pr
    nms <- lab
  }

  ## check if all threshold parameters are in order, if not, calculate sorted ones
  us <- sapply(tp, is.unsorted)
  if (any(us)) {
    usj <- which(us)
    for (j in usj) {
      tpj <- tp[[j]]
      nj <- length(tpj)

      ## check if there is a point with a biggest parameter, if yes, take mean
      for (i in 1:nj) {
        if (all(tpj[i] > tpj[(i + 1):nj])) {
          tpj[i] <- mean(tpj[i:nj])
          tpj <- tpj[-(i + 1:nj)]
          break
        }
      }

      ## recursive sorting if there is still unorder (e.g. 4, 2, 3, 1)
      while(is.unsorted(tpj)) {
        uo_pos <- which(diff(tpj) < 0)                     # locate unordered parameters, returns position of the first
        tpj[uo_pos] <- (tpj[uo_pos] + tpj[uo_pos + 1]) / 2 # replace first with location of intersection of ccc curves (= (eps1 + eps2)/ 2)
        tpj <- tpj[-(uo_pos + 1)]                          # remove second
      }

      tp[[j]] <- tpj
    }
  }

  ## setup axis range and positions
  if (is.null(ylim)) ylim <- extendrange(unlist(tp, use.names = FALSE), f = 0.25)
  xi <- 0:m + c(0:(m - 1), m - 1) * off
  xlim <- c(xi[1], xi[m + 1])

  ## setup graphical window
  plot(0, 0, xlim = xlim, ylim = ylim, type = "n", xaxs = "i", yaxs = "i", axes = FALSE, ylab = ylab, xlab = xlab, main = main, ...)

  ## plot items
  for (j in seq_along(tp)) {
    rect(xleft = xi[j], xright = xi[j] + 1, ybottom = c(ylim[1], tp[[j]]), ytop = c(tp[[j]], ylim[2]), col = cols[[j]])
  }

  ## indicate unordered parameters
  if ((is.null(type) || type == "mode")) {
    orgtp <- threshpar(object, type = type, ref = ref, alias = alias, vcov = FALSE)
    uo_items <- which(!sapply(mapply(all.equal, tp, orgtp, check.attributes = FALSE, SIMPLIFY = FALSE, USE.NAMES = FALSE), is.logical))
    for (j in uo_items) {
      uo_pars <- setdiff(orgtp[[j]], tp[[j]])
      lines(x = rep(c(xi[j], xi[j] + 1, NA), length(uo_pars)), y = rep(uo_pars, each = 3), col = linecol, lty = 2)
    }
  }

  ## add axes
  if(axes) {
    axis(2)
    axis(4)
    if(names) {
      text(xi[-(m + 1)] + 0.5, par("usr")[3], labels = nms, srt = srt, adj = adj, xpd = TRUE, cex = 0.9)
    } else {
      axis(1, at = (xi[-(m + 1)] + 0.5), labels = nms)
    }
  }
  box()
  ## on.exit(par(opar))
}

## profiles of item, threshold or discrimination parameters
profileplot <- function(object,
  what = c("items", "thresholds", "discriminations", "guessings", "uppers"),
  parg = list(type = NULL, ref = NULL, alias = TRUE, logit = FALSE), index = TRUE,
  names = TRUE, main = NULL, abbreviate = FALSE, ref = TRUE, col = "lightgray",
  border = "black", pch = NULL, cex = 1, refcol = "lightgray",
  linecol = "black", lty = 2, ylim = NULL, xlab = NULL, ylab = NULL,
  add = FALSE, srt = 45, adj = c(1.1, 1.1), axes = TRUE, ...)
{
  ## check input
  what <- match.arg(what)
  if(what == "thresholds") type <- parg$type
  refpar <- parg$ref
  alias <- if(is.null(parg$alias)) TRUE else parg$alias
  logit <- parg$logit
  addargs <- list(...)
  if("difficulty" %in% names(addargs)) {
    warning("The argument 'difficulty' is deprecated and not longer used. All plotted parameters are difficulty parameters.")
  }
  if("center" %in% names(addargs)) {
    warning("The argument 'center' is deprecated and not longer used. Centered parameters can be plotted when setting the 'ref' argument of 'parg' to NULL (default).")
  }
  ## parameters to be plotted
  if(what == "items") {
    cf <- itempar(object, ref = refpar, alias = alias, vcov = FALSE)
    ncf <- length(cf)
    lb <- "difficulty"
  } else if(what == "thresholds") {
    cf <- coef(threshpar(object, ref = refpar, alias = alias, type = type,
      vcov = FALSE), type = "matrix")
    ncf <- nrow(cf)
    ncat <- ncol(cf)
    lb <- "threshold"
  } else if(what == "discriminations") {
    cf <- discrpar(object, ref = refpar, alias = alias, vcov = FALSE)
    ncf <- length(cf)
    lb <- "discrimination"
  } else if(what == "guessings") {
    cf <- guesspar(object, alias = alias, vcov = FALSE, logit = logit)
    ncf <- length(cf)
    lb <- "guessing"
  } else {
    cf <- upperpar(object, alias = alias, vcov = FALSE, logit = logit)
    ncf <- length(cf)
    lb <- "upper asymptote"
  }
  cf_ref <- mean(cf)
  ## labeling
  if(is.null(names)) names <- !index
  if(isTRUE(names)) nms <- if(what == "thresholds") rownames(cf) else names(cf)
  if(is.character(names)) {
    nms <- names
    names <- TRUE
  }
  if(!names & index) {
    lab <- rep(NA, ncf)
    lab[c(1, ncf)] <- c(1, ncf)
    pr <- pretty(1:ncf)
    pr <- pr[pr > 1 & pr < ncf]
    lab[pr] <- pr
    nms <- lab
  }
  ## abbreviation
  if(is.logical(abbreviate)) {
    nlab <- max(nchar(nms))
    abbreviate <- if(abbreviate) {
      as.numeric(cut(nlab, c(-Inf, 1.5, 4.5, 7.5, Inf)))
    } else {
      nlab
    }
  }
  nms <- abbreviate(nms, abbreviate)
  ## graphical parameter processing
  type <- if(index) "b" else "p"
  missing_col_border <- !missing(col) && missing(border)
  if(what != "thresholds") {
    if(is.null(pch)) pch <- 21
    pch <- rep(pch, length.out = ncf)
    col <- rep(col, length.out = ncf)
    border <- rep(border, length.out = ncf)
  } else {
    col <- matrix(rep(t(col), length.out = ncf * ncat), ncol = ncat,
      byrow = TRUE)
    border <- matrix(rep(t(border), length.out = ncf * ncat), ncol = ncat,
      byrow = TRUE)
    linecol <- rep(linecol, length.out = ncat)
    if(!is.null(pch)) pch <- matrix(rep(t(pch), length.out = ncf * ncat),
      ncol = ncat, byrow = TRUE)
  }
  if((!index | is.null(pch)) && missing_col_border) border <- col
  cex <- rep(cex, length.out = ncf)
  if(is.null(ylim)) ylim <- range(cf, na.rm = TRUE)
  ylim <- rep(ylim, length.out = 2)
  xlim <- if(!index && what == "thresholds" && ncat > 1) {
    extendrange(c(1, ncat), f = 0.25)
  } else {
    NULL
  }
  if(is.null(xlab)) xlab <- if(index) {
    ""
  } else {
   if(what != "thresholds") "Items" else "Categories"
  }
  if(is.null(ylab)) ylab <- paste("Item", lb, "parameters")
  ## raw plot
  ix <- if(index) {
    1:ncf
  } else if(what == "thresholds") {
    matrix(rep(1:ncat, each = ncf), nrow = ncf)
  } else {
    rep(0, ncf)
  }
  if(!add) {
    plot(ix, rep(0, length(ix)), xlab = xlab, ylab = ylab, type = "n",
      axes = FALSE, ylim = ylim, xlim = xlim, main = main, ...)
    if(ref & what != "thresholds") abline(h = cf_ref, col = refcol)
    if(axes) axis(2)
    if(!index & what == "thresholds" & axes) {
      axis(1, at = unique(ix), labels = paste("Category", 1:ncat))
    }
    box()
  }
  ## actual data
  if(!index & names) {
    if(what == "thresholds") {
      for(i in 1:ncat) text(nms, x = ix[, i], y = cf[, i], col = border[, i])
    } else {
      text(nms, x = ix, y = cf, col = border)
    }
  } else {
    if(what == "thresholds") {
      for(i in 1:ncat) {
        lines(ix, cf[, i], type = type, lty = lty, pch = NA, col = linecol[i],
          cex = cex)
        if(is.null(pch)) {
          text(x = ix, y = cf[, i], labels = paste0("C", i), col = border[, i],
           cex = cex * 0.8, font = 2)
        } else {
          lines(x = ix, y = cf[, i], type = type, lty = 0, pch = pch[, i],
            col = border[, i], bg = col[, i], cex = cex)
        }
      }
    } else {
      lines(ix, cf, type = type, lty = lty, pch = NA, col = linecol, cex = cex)
      lines(ix, cf, type = type, lty = 0, pch = pch, col = border, bg = col,
        cex = cex)
    }
    if(index && !add && axes) {
      if(names) {
        text(ix, par("usr")[3], labels = nms, srt = srt, adj = adj, xpd = TRUE,
         cex = 0.9)
      } else {
        axis(1, at = ix, labels = nms)
      }
    }
  }
}

## ICC/CCC/response curve functions plot
curveplot <- function(object, ref = NULL, items = NULL, names = NULL,
  layout = NULL, xlim = NULL, ylim = c(0, 1), col = NULL, lty = NULL,
  main = NULL, xlab = "Latent trait", ylab = "Probability", add = FALSE, ...)
{
  ## setup relevant informations and process input
  tp <- coef(threshpar(object, type = "mode", vcov = FALSE), type = "matrix")
  oj <- apply(tp, 1, function (j) sum(!is.na(j)) + 1)
  m0 <- nrow(tp)
  idx <- rep(1:m0, oj)
  nms <- if (!is.null(colnames(object$data))) colnames(object$data) else  paste0("Item", formatC(1:m0, width = nchar(m0), digits = 0, flag = "0"))
  if (is.null(items)) {
    items <- 1:m0
  } else if (is.numeric(items)) {
    stopifnot(all(items %in% 1:m0))
  } else if (is.character(items)) {
    stopifnot(all(items %in% nms))
    items <- which(nms %in% items)
  }
  m <- length(items)

  ## setup plotting parameters
  if (is.null(names)) {
    pnms <- nms
  } else {
    stopifnot(length(names) == m)
    pnms <- rep(NULL, m0)
    pnms[items] <- names
  }
  if (is.null(layout)) {
    nrow <- ceiling(sqrt(m))
    ncol <- ceiling(m / nrow)
    layout <- matrix(1:(nrow * ncol), nrow = nrow, ncol = ncol)
  } else stopifnot(prod(dim(layout)) >= m)
  if (is.null(xlim)) xlim <- extendrange(unclass(tp), f = 0.25)
  if (is.null(col)) col <- hclrainbow(max(oj))
  if (is.null(lty)) lty <- 1 else stopifnot(length(lty) %in% c(1, max(oj)))

  ## get probabilities
  theta <- seq(from = xlim[1], to = xlim[2], by = 0.1)
  pr <- predict(object, newdata = theta, type = "probability", ref = ref)

  ## setup plotting area, setup par
  if (!add) {
    layout(layout)
    opar <- par(mar = c(4.25, 4.25, 3, 2.5))
  } else {
    if (m > 1) stop("Overlaying response curves is only possible with a single item plotted.")
  }

  ## loop through items and plot CCC
  for (j in items) matplot(x = theta, y = pr[, j == idx], type = "l", main = if (is.null(main)) pnms[j] else main, xaxs = "i",
                           lty = lty, col = col, xlab = xlab, ylab = ylab, ylim = ylim, xlim = xlim, add = add, ...)

  if (!add) {
      layout(matrix(1, nrow = 1, ncol = 1))
      on.exit(par(opar))
  }
}

## person item plot
piplot <- function(object, pcol = NULL, histogram = TRUE, ref = NULL,
  items = NULL, xlim = NULL, names = NULL, labels = TRUE,
  main = "Person-Item Plot", xlab = "Latent trait", abbreviate = FALSE,
  cex.axis = 0.8, cex.text = 0.5, cex.points = 1.5,
  grid = TRUE, ...)
{
  ## FIXME: general way to handle prettifying options, e.g. supply all colors as a list?

  ## handle grid
  if(is.null(grid)) grid <- TRUE
  if(is.logical(grid)) grid <- if(grid) "lightgray" else "transparent"

  ## setup parameters, number of items and item labels
  tp <- threshpar(object, ref = ref, vcov = FALSE)
  ip <- sapply(tp, mean)
  m <- length(ip)
  nms <- names(ip)
  pp <- personpar(object, ref = ref, vcov = FALSE)
  type <- attributes(pp)$type
  ## distinguish based on "type", preprocessing
  if(type == "normal") {
    gp <- split(pp, rep(1:(length(pp) / 2), each = 2))
    if(!is.null(pcol)) {
      pcol <- rep_len(pcol, length.out = length(gp))
      coltrans <- apply(col2rgb(pcol), 2, function(x) {
        tmp <- split(x, 1:3)
        rgb(tmp[[1]], tmp[[2]], tmp[[3]], 25, maxColorValue = 255)
      })
    } else if(length(gp) > 1) {
      pcol <- hclrainbow(length(gp))
      coltrans <- apply(col2rgb(pcol), 2, function(x) {
        tmp <- split(x, 1:3)
        rgb(tmp[[1]], tmp[[2]], tmp[[3]], 25, maxColorValue = 255)
      })
    } else {
      pcol <- "gray50"
      tmp <- col2rgb(pcol)
      coltrans <- rgb(tmp[1, 1], tmp[2, 1], tmp[3, 1], 25, maxColorValue = 255)
    }
    pp <-
    if(!is.null(object$impact)) {
      split(personpar(object, personwise = TRUE), object$impact)
    } else {
      list(personpar(object, personwise = TRUE))
    }
  } else if(type == "discrete") {
    if(!is.null(pcol)) {
      if(length(pcol) != 1) {
        pcol <- pcol[1]
      }
    } else {
      pcol <- "gray50"
    }
    ppr <- range(as.numeric(names(pp)))
    rs <- rowSums(object$data, na.rm = TRUE)
    rs <- rs[rs >= ppr[1] & rs <= ppr[2]]
    ppt <- table(pp[rs])
    pptx <- as.numeric(names(ppt))
  }
  ## process argument items
  if(is.null(items)) {
    items <- 1:m
  } else if(is.numeric(items)) {
    stopifnot(all(items %in% 1:m))
  } else if(is.character(items)) {
    stopifnot(all(items %in% nms))
    items <- which(items %in% nms)
  } else {
    stop("Argument 'items' is misspecified (see ?piplot for possible values).")
  }
  ## subset to requested items
  m <- length(items)
  ip <- ip[items]
  tp <- tp[items]
  nms <- nms[items]
  ## abbreviation
  if(is.logical(abbreviate)) {
    nlab <- max(nchar(nms))
    abbreviate <-
    if(abbreviate) {
      as.numeric(cut(nlab, c(-Inf, 1.5, 4.5, 7.5, Inf)))
    } else {
      nlab
    }
  }
  nms <- abbreviate(nms, abbreviate)
  w <- max(nchar(nms)) * 0.5
  ## setup x axis limits, backup par
  xlim <-
  if(is.null(xlim)) {
    if(type == "normal") {
      range(c(unlist(tp), unlist(lapply(pp, function(x) hist(x, plot = FALSE)$breaks))))
    } else if(type == "discrete") {
      range(c(unlist(tp), pp))
    }
  } else {
    xlim
  }
  ylim <- c(1, m)
  ## setup graphic region
  layout(matrix(1:2, ncol = 1, nrow = 2), heights = c(1, 2))
  ## person parameter plot different for CML vs. MML
  opar <- par(mar = c(0, w, 2.5, 1))
  if(type == "normal") {
    ylimpp1 <- max(unlist(lapply(pp, function(x) {
      hist(x, plot = FALSE)$density
    })))
    ylimpp2 <- max(sapply(gp, function(x) dnorm(x[1], x[1], sqrt(x[2]))))
    ylimpp <- c(0, max(ylimpp1, ylimpp2))
    ## FIXME: allow "border" color to be defined by the user
    if(histogram) {
      hist(pp[[1]], freq = FALSE, xlim = xlim, ylim = ylimpp,
        col = coltrans[1], border = "gray", axes = FALSE, xlab = "",
        ylab = "", main = main)
      x <- NULL ## for R CMD check due to the following expression in curve()
      curve(dnorm(x, gp[[1]][1], sqrt(gp[[1]][2])), xlim[1], xlim[2],
        col = pcol[1], add = TRUE)
      if(length(gp) > 1) {
        for(a in 2:length(gp)) {
          hist(pp[[a]], freq = FALSE, xlim = xlim, ylim = ylimpp,
            col = coltrans[a], border = "gray", add = TRUE)
          curve(dnorm(x, gp[[a]][1], sqrt(gp[[a]][2])), xlim[1], xlim[2],
            col = pcol[a], add = TRUE)
        }
        legend("topleft", legend = levels(object$impact), col = pcol, lty = 1,
          bty = "n", title = "Impact", cex = 0.5)
      }
    } else {
      curve(dnorm(x, gp[[1]][1], sqrt(gp[[1]][2])), xlim[1], xlim[2],
        ylim = ylimpp, col = pcol[1], axes = FALSE, xlab = "", ylab = "",
        main = main)
      if(length(gp) > 1) {
        for(a in 2:length(gp)) {
          curve(dnorm(x, gp[[a]][1], sqrt(gp[[a]][2])), xlim[1], xlim[2],
            col = pcol[a], add = TRUE)
        }
        legend("topleft", legend = levels(object$impact), col = pcol, lty = 1,
          bty = "n", title = "Impact", cex = 0.5)
      }
    }
  } else if(type == "discrete") {
    plot(x = 0, xlim = xlim, ylim = c(0, max(ppt)), type = "n", axes = FALSE,
      xlab = "", ylab = "", main = main, cex.axis = cex.axis, ...)
    points(x = pptx, y = ppt, type = "h", col = pcol, lend = 2, lwd = 5, ...)
  }
  box()
  ## item/threshold parameter plot
  par(mar = c(4.5, w, 0, 1))
  plot(x = 0, xlim = xlim, ylim = ylim, type = "n", axes = FALSE, xlab = xlab,
    ylab = "", cex.axis = cex.axis)
  ## grid (horizontal gray lines for the items or none)
  if(grid != "transparent") {
    abline(h = 1:m, col = grid)
  }
  for(i in 1:m) {
    lines(y = rep(i, length(tp[[i]])), x = tp[[i]], type = "b", pch = 1,
      cex = cex.points, ...)
    if(labels) {
      text(x = tp[[i]], y = rep(i, length(tp[[i]])),
        labels = gsub("C", "", names(tp[[i]])), cex = cex.text, ...)
    }
  }
  points(x = ip, y = 1:m, pch = 16, cex = cex.points, ...)
  axis(side = 1, cex.axis = cex.axis)
  axis(side = 2, at = 1:m, labels = nms, las = 2, cex.axis = cex.axis)
  box()
  ## restore par
  layout(matrix(1, nrow = 1, ncol = 1))
  on.exit(par(opar))
}

## information curve plot
infoplot <- function(object, what = c("categories", "items", "test"),
  ref = NULL, items = NULL, names = NULL, layout = NULL, xlim = NULL,
  ylim = NULL, col = NULL, lty = NULL, lwd = NULL, main = NULL, legend = TRUE,
  xlab = "Latent trait", ylab = "Information", add = FALSE, ...)
{
  ## process input
  what <- match.arg(what)

  ## setup items
  nms <- if (!is.null(colnames(object$data))) colnames(object$data) else paste0("Item", formatC(1:ncol(object$data), width = nchar(ncol(object$data)), digits = 0, flag = "0"))
  m <- length(nms)
  if (is.null(items)) {
    items <- 1:m
  } else if (is.numeric(items)) {
    stopifnot(all(items %in% 1:m))
  } else if (is.character(items)) {
    stopifnot(all(items %in% nms))
    items <- which(nms %in% items)
  }
  m <- length(items)

  ## setup plotting names
  if (is.null(names)) {
    pnms <- nms
  } else {
    stopifnot(length(names) == m)
    pnms <- rep(NULL, m)
    pnms[items] <- names
  }

  ## setup layout
  if (what == "test") {
    if (!is.null(layout)) warning("Argument 'layout' is not considered when visualizing test information.")
    layout <- matrix(1, nrow = 1, ncol = 1)
    overlay <- TRUE
  } else if (is.null(layout)) {
    if (what == "items") {
      layout <- matrix(1, nrow = 1, ncol = 1)
      overlay <- TRUE
    } else {
      nrow <- ceiling(sqrt(m))
      ncol <- ceiling(m / nrow)
      layout <- matrix(1:(nrow * ncol), nrow = nrow, ncol = ncol)
      overlay <- FALSE
    }
  } else {
    stopifnot(prod(dim(layout)) >= m)
    overlay <- FALSE
  }

  ## setup graphical stuff and information
  tp <- coef(threshpar(object, type = "mode", vcov = FALSE), type = "matrix")
  if (is.null(xlim)) xlim <- extendrange(unclass(tp), f = 0.5)
  theta <- seq(from = xlim[1], to = xlim[2], by = 0.05)
  if (is.null(lty)) lty <- 1
  if (what == "test") {
    type <- "test-information"
    if (is.null(col)) col <- "black"
    if (is.null(main)) main <- "Test Information"
  } else if (what == "items") {
    type <- "item-information"
    if (is.null(col)) col <- if (overlay) hclrainbow(m) else "black"
    if (is.null(main) & overlay) main <- "Item Information"
  } else {
    type <- "category-information"
    if (is.null(col)) col <- hclrainbow(ncol(tp) + 1)
  }
  info <- predict(object, ref = ref, type = type, newdata = theta)

  ## plot requested information
  if (!add) {
    layout(layout)
    opar <- par(mar = c(4.25, 4.25, 3, 2.5))
  } else {
    if (!overlay && m > 1 && what != "test") stop("Overlaying information curves is only possible for tests or single items.")
  }

  if (overlay) {
    if (what == "items") info <- info[, items]
    matplot(x = theta, y = info, xlim = xlim, ylim = ylim, type = "l", main = main, lty = lty, col = col, lwd = lwd,
            xlab = xlab, ylab = ylab, xaxs = "i", add = add, ...)
    if (what == "items" && !add && legend) legend(x = "topleft", legend = pnms[items], col = col, lwd = lwd, lty = lty, bty = "n")
  } else {
    for (j in items) {
      matplot(x = theta, y = info[, grepl(paste0(nms[j], "-"), colnames(info))], xlim = xlim, ylim = ylim, xaxs = "i",
              main = pnms[j], type = "l", lty = lty, lwd = lwd, col = col, xlab = xlab, ylab = ylab, add = add, ...)
    }
  }

  if (!add) {
    layout(matrix(1, nrow = 1, ncol = 1))
    on.exit(par(opar))
  }
}

Try the psychotools package in your browser

Any scripts or data that you put into this service are public.

psychotools documentation built on May 29, 2024, 8:12 a.m.