Description Usage Arguments Details Value References See Also Examples
Density, distribution function, quantile function and random
generation for the linear failure rate(LFR)
distribution with parameters alpha
and beta
.
1 2 3 4 |
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
parameter. |
beta |
parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x]. |
The linear failure rate(LFR) distribution has density
f(x) = (α + β x) exp{-(α x + (β x^2)/2)}; x ≥ 0, α > 0, β > 0.
where α and β are the shape
and scale
parameters, respectively.
dlfr
gives the density,
plfr
gives the distribution function,
qlfr
gives the quantile function, and
rlfr
generates random deviates.
Bain, L.J. (1974). Analysis for the Linear Failure-Rate Life-Testing Distribution, Technometrics, 16(4), 551 - 559.
Lawless, J.F.(2003). Statistical Models and Methods for Lifetime Data, John Wiley and Sons, New York.
Sen, A. and Bhattacharya, G.K.(1995). Inference procedure for the linear failure rate mode, Journal of Statistical Planning and Inference, 46, 59-76.
.Random.seed
about random number; slfr
for linear failure rate(LFR) survival / hazard etc. functions
1 2 3 4 5 6 7 8 9 10 | ## Load data sets
data(sys2)
## Maximum Likelihood(ML) Estimates of alpha & beta for the data(sys2)
## Estimates of alpha & beta using 'maxLik' package
## alpha.est = 1.77773e-03, beta.est = 2.77764e-06
dlfr(sys2, 1.777673e-03, 2.777640e-06, log = FALSE)
plfr(sys2, 1.777673e-03, 2.777640e-06, lower.tail = TRUE, log.p = FALSE)
qlfr(0.25, 1.777673e-03, 2.777640e-06, lower.tail=TRUE, log.p = FALSE)
rlfr(30, 1.777673e-03, 2.777640e-06)
|
[1] 0.0017757358 0.0017745697 0.0017732873 0.0017705160 0.0017646173
[6] 0.0017630576 0.0017584366 0.0017541296 0.0017532506 0.0017519531
[11] 0.0017510462 0.0017404489 0.0017362200 0.0017248826 0.0017176977
[16] 0.0016961007 0.0016944748 0.0016910991 0.0016836584 0.0016738648
[21] 0.0016680404 0.0016364557 0.0016299163 0.0016247524 0.0016185160
[26] 0.0016101383 0.0016057394 0.0015999128 0.0015914128 0.0015812527
[31] 0.0015766000 0.0015542702 0.0015397661 0.0015359545 0.0015063412
[36] 0.0014760662 0.0014703285 0.0014533265 0.0014411548 0.0013879039
[41] 0.0013878013 0.0013847407 0.0013633576 0.0013120000 0.0013022035
[46] 0.0012901269 0.0012660803 0.0012566483 0.0012365747 0.0011391786
[51] 0.0011235476 0.0011195858 0.0010871093 0.0010705849 0.0010021459
[56] 0.0009567953 0.0009380090 0.0008951652 0.0008644532 0.0008529658
[61] 0.0008429461 0.0008308842 0.0007953377 0.0007936468 0.0007381854
[66] 0.0007340977 0.0006987760 0.0006896497 0.0006623454 0.0005864691
[71] 0.0005627484 0.0005460053 0.0004615515 0.0004397958 0.0003952455
[76] 0.0003608421 0.0003348855 0.0002959755 0.0002883676 0.0002685088
[81] 0.0002314774 0.0002220609 0.0002199863 0.0002100925 0.0002021267
[86] 0.0001731487
[1] 0.008510498 0.013232418 0.018146216 0.027962678 0.046240126 0.050632092
[7] 0.062834306 0.073319465 0.075371284 0.078350710 0.080399966 0.102642186
[13] 0.110795042 0.131112754 0.143041502 0.175613298 0.177901938 0.182590970
[19] 0.192647867 0.205356331 0.212658439 0.249509240 0.256646303 0.262179258
[25] 0.268746908 0.277383628 0.281837628 0.287655908 0.295985330 0.305709646
[31] 0.310083281 0.330434805 0.343136031 0.346411677 0.371055729 0.394931170
[37] 0.399321305 0.412097863 0.421041873 0.458389684 0.458459077 0.460524621
[43] 0.474732501 0.507387542 0.513400223 0.520723578 0.535025707 0.540537876
[49] 0.552094030 0.605100316 0.613178247 0.615208282 0.631592917 0.639759772
[55] 0.672444677 0.693159547 0.701534502 0.720204270 0.733233759 0.738033917
[61] 0.742188882 0.747151754 0.761534701 0.762210019 0.783926933 0.785494913
[67] 0.798862245 0.802263862 0.812315209 0.839283019 0.847430272 0.853101281
[73] 0.880716787 0.887566129 0.901255990 0.911518620 0.919082110 0.930127552
[79] 0.932245705 0.937709690 0.947642869 0.950114376 0.950655880 0.953223094
[85] 0.955271622 0.962581586
[1] 145.3299
[1] 473.71052 218.12327 751.26545 404.09551 727.31003 389.47654 534.47797
[8] 286.00176 188.22651 374.98223 467.98512 298.20416 524.32910 57.74579
[15] 324.99441 197.31346 656.44166 176.21887 546.49865 27.88765 236.69931
[22] 171.99003 294.17826 479.44546 159.41245 506.42717 305.53556 73.17614
[29] 174.38263 748.83932
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.