| Loggamma | R Documentation |
Density, distribution function, quantile function and random
generation for the log-gamma(LG)
distribution with parameters alpha and lambda.
dlog.gamma(x, alpha, lambda, log = FALSE)
plog.gamma(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qlog.gamma(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rlog.gamma(n, alpha, lambda)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
parameter. |
lambda |
parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
The log-gamma(LG) distribution has density
f(x; \alpha, \lambda) = \alpha \lambda \exp\left\{\lambda x\right\} \exp\left\{-\alpha \exp{\lambda x}\right\};\; (\alpha, \lambda) > 0, x > 0
where \alpha and \lambda are the
parameters, respectively.
dlog.gamma gives the density,
plog.gamma gives the distribution function,
qlog.gamma gives the quantile function, and
rlog.gamma generates random deviates.
Klugman, S., Panjer, H. and Willmot, G. (2004). Loss Models: From Data to Decisions, 2nd ed., New York, Wiley.
Lawless, J. F., (2003). Statistical Models and Methods for Lifetime Data, 2nd ed., John Wiley and Sons, New York.
.Random.seed about random number; slog.gamma for ExpExt survival / hazard etc. functions
## Load data sets
data(conductors)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(conductors)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 0.0088741, lambda.est = 0.6059935
dlog.gamma(conductors, 0.0088741, 0.6059935, log = FALSE)
plog.gamma(conductors, 0.0088741, 0.6059935, lower.tail = TRUE, log.p = FALSE)
qlog.gamma(0.25, 0.0088741, 0.6059935, lower.tail=TRUE, log.p = FALSE)
rlog.gamma(30, 0.0088741, 0.6059935)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.