Description Usage Arguments Details Value References See Also Examples
Density, distribution function, quantile function and random
generation for the log-gamma(LG)
distribution with parameters alpha
and lambda
.
1 2 3 4 | dlog.gamma(x, alpha, lambda, log = FALSE)
plog.gamma(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qlog.gamma(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rlog.gamma(n, alpha, lambda)
|
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
parameter. |
lambda |
parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x]. |
The log-gamma(LG) distribution has density
f(x; α, λ) = α λ exp(λ x) exp{-α exp(λ x)}; (α, λ) > 0, x > 0
where α and λ are the parameters, respectively.
dlog.gamma
gives the density,
plog.gamma
gives the distribution function,
qlog.gamma
gives the quantile function, and
rlog.gamma
generates random deviates.
Klugman, S., Panjer, H. and Willmot, G. (2004). Loss Models: From Data to Decisions, 2nd ed., New York, Wiley.
Lawless, J. F., (2003). Statistical Models and Methods for Lifetime Data, 2nd ed., John Wiley and Sons, New York.
.Random.seed
about random number; slog.gamma
for ExpExt survival / hazard etc. functions
1 2 3 4 5 6 7 8 9 | ## Load data sets
data(conductors)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(conductors)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 0.0088741, lambda.est = 0.6059935
dlog.gamma(conductors, 0.0088741, 0.6059935, log = FALSE)
plog.gamma(conductors, 0.0088741, 0.6059935, lower.tail = TRUE, log.p = FALSE)
qlog.gamma(0.25, 0.0088741, 0.6059935, lower.tail=TRUE, log.p = FALSE)
rlog.gamma(30, 0.0088741, 0.6059935)
|
[1] 0.17769326 0.12656282 0.22044603 0.19966524 0.17464348 0.11533119
[7] 0.21840077 0.07986723 0.18700118 0.03130737 0.19439387 0.15329166
[13] 0.00345913 0.11124544 0.19976176 0.06416459 0.17637359 0.05916786
[19] 0.21861499 0.21945599 0.17929110 0.17729228 0.12232793 0.15081279
[25] 0.13452461 0.18775767 0.19853713 0.08468278 0.16746782 0.20287112
[31] 0.20999625 0.13452596 0.22200391 0.19534757 0.16646823 0.07962176
[37] 0.19927790 0.13050059 0.09303768 0.21932159 0.21700602 0.14763472
[43] 0.04376336 0.21947817 0.07295049 0.22159913 0.17741964 0.22241786
[49] 0.21125945 0.21604330 0.19805439 0.12513253 0.11401216 0.22210243
[55] 0.17597076 0.17371703 0.14986993 0.01856427 0.14120754
[1] 0.37400917 0.91546467 0.57582406 0.45168180 0.36467211 0.21538454
[7] 0.70376030 0.14246281 0.82010852 0.05309823 0.80179525 0.30513845
[13] 0.99919943 0.20654862 0.45208123 0.11245805 0.36993739 0.10315081
[19] 0.55738027 0.56526580 0.37900697 0.37276672 0.23082993 0.29875228
[25] 0.25881722 0.40690757 0.79020225 0.95490815 0.34363109 0.46536894
[31] 0.75010715 0.90619544 0.66518404 0.43449710 0.34079263 0.14198434
[37] 0.45008603 0.91096600 0.16861955 0.56394946 0.54409268 0.29069425
[43] 0.98203160 0.56548526 0.12909857 0.67161647 0.84052529 0.60684097
[49] 0.50681008 0.53694719 0.44511933 0.23714004 0.21251776 0.66340762
[55] 0.36870418 0.36188522 0.29634682 0.99401495 0.27480859
[1] 5.740522
[1] 0.4439167 9.5519168 8.4003302 7.9678701 8.4181952 8.3795368
[7] 7.4035645 9.0401984 7.3371837 5.7535683 8.1927983 5.4216908
[13] 6.6675220 8.0613461 7.4483014 6.6841777 8.4953158 8.7186131
[19] 9.8001621 6.1594553 10.2221670 8.1643837 7.5467394 9.5617286
[25] 8.9187228 0.3014123 7.2197568 7.8597558 8.0736232 8.3030515
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.