Description Usage Arguments Details Value References See Also Examples
Density, distribution function, quantile function and random
generation for the Logistic-Exponential(LE)
distribution with shape parameter alpha
and scale parameter lambda
.
1 2 3 4 | dlogis.exp(x, alpha, lambda, log = FALSE)
plogis.exp(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qlogis.exp(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.exp(n, alpha, lambda)
|
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
lambda |
scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x]. |
The Logistic-Exponential(LE) distribution has density
f(x) = (λ α exp(λ x) (exp{λ x} - 1)^{α - 1}) / {{1 + (exp{λ x} - 1)^α}^2}; x ≥ 0, α > 0, λ > 0.
where α and λ are the shape
and scale
parameters, respectively.
dlogis.exp
gives the density,
plogis.exp
gives the distribution function,
qlogis.exp
gives the quantile function, and
rlogis.exp
generates random deviates.
Lan, Y. and Leemis, L. M. (2008). The Logistic-Exponential Survival Distribution, Naval Research Logistics, 55, 252-264.
.Random.seed
about random number; slogis.exp
for ExpExt survival / hazard etc. functions
1 2 3 4 5 6 7 8 9 | ## Load data sets
data(bearings)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(bearings)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 2.36754, lambda.est = 0.01059
dlogis.exp(bearings, 2.36754, 0.01059, log = FALSE)
plogis.exp(bearings, 2.36754, 0.01059, lower.tail = TRUE, log.p = FALSE)
qlogis.exp(0.25, 2.36754, 0.01059, lower.tail=TRUE, log.p = FALSE)
rlogis.exp(30, 2.36754, 0.01059)
|
[1] 0.0033823124 0.0070692981 0.0085013776 0.0111439270 0.0112987869
[6] 0.0120879111 0.0126325050 0.0129765563 0.0129866023 0.0131216453
[11] 0.0131640653 0.0121945006 0.0120587947 0.0120587947 0.0120188415
[16] 0.0088881892 0.0070008818 0.0059659259 0.0049009850 0.0047929239
[21] 0.0023676011 0.0023584277 0.0005600842
[1] 0.02383936 0.08093225 0.11270976 0.19689811 0.20363118 0.24438005
[7] 0.28398137 0.32295071 0.32450850 0.35272098 0.37165120 0.52903290
[13] 0.53921974 0.53921974 0.54210907 0.70237281 0.77372906 0.80946592
[19] 0.84458486 0.84807455 0.92418756 0.92447112 0.98085560
[1] 46.06319
[1] 48.054662 31.139879 75.369837 97.439117 61.145055 56.121111
[7] 59.677665 104.218248 143.714824 36.952144 63.462880 6.125662
[13] 86.821711 81.921083 124.856878 47.592557 57.962373 69.432441
[19] 100.087351 81.500143 42.347134 65.341695 60.640074 59.985724
[25] 52.065776 80.813339 148.555568 33.799777 115.218824 44.801351
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.