LogisExp: The Logistic-Exponential(LE) distribution

LogisExpR Documentation

The Logistic-Exponential(LE) distribution

Description

Density, distribution function, quantile function and random generation for the Logistic-Exponential(LE) distribution with shape parameter alpha and scale parameter lambda.

Usage

dlogis.exp(x, alpha, lambda, log = FALSE)
plogis.exp(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qlogis.exp(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.exp(n, alpha, lambda)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

alpha

shape parameter.

lambda

scale parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X \le x] otherwise, P[X > x].

Details

The Logistic-Exponential(LE) distribution has density

f(x) = \frac{\lambda \; \alpha \; e^{\lambda x} \left(e^{\lambda x} -1\right)^{\alpha -1} }{\left\{1+\left(e^{\lambda x} -1\right)^{\alpha } \right\}^2 };\, x\ge 0,\; \alpha >0,\; \lambda >0.

where \alpha and \lambda are the shape and scale parameters, respectively.

Value

dlogis.exp gives the density, plogis.exp gives the distribution function, qlogis.exp gives the quantile function, and rlogis.exp generates random deviates.

References

Lan, Y. and Leemis, L. M. (2008). The Logistic-Exponential Survival Distribution, Naval Research Logistics, 55, 252-264.

See Also

.Random.seed about random number; slogis.exp for ExpExt survival / hazard etc. functions

Examples

## Load data sets
data(bearings)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(bearings)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 2.36754, lambda.est = 0.01059
dlogis.exp(bearings, 2.36754, 0.01059, log = FALSE)
plogis.exp(bearings, 2.36754, 0.01059, lower.tail = TRUE, log.p = FALSE)
qlogis.exp(0.25, 2.36754, 0.01059, lower.tail=TRUE, log.p = FALSE)
rlogis.exp(30, 2.36754, 0.01059)

reliaR documentation built on Nov. 5, 2025, 6:57 p.m.

Related to LogisExp in reliaR...