Description Usage Arguments Details Value References See Also Examples
Density, distribution function, quantile function and random
generation for the Marshall-Olkin Extended Weibull (MOEW)
distribution with tilt parameter alpha
and scale parameter lambda
.
1 2 3 4 |
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
lambda |
tilt parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x]. |
The Marshall-Olkin extended Weibull (MOEW) distribution has density
f(x) = {λ α x^{α - 1} exp(-x^α)} / {{1 - (1 - λ) \exp(-x^α)}^2}; x > 0, λ > 0, α > 0
where α and λ are the tilt
and scale
parameters, respectively.
dmoew
gives the density,
pmoew
gives the distribution function,
qmoew
gives the quantile function, and
rmoew
generates random deviates.
Marshall, A. W., Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the Weibull and Weibull families. Biometrika,84(3):641-652.
Marshall, A. W., Olkin, I.(2007). Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. Springer, New York.
.Random.seed
about random number; smoew
for MOEW survival / hazard etc. functions;
1 2 3 4 5 6 7 8 9 | ## Load data sets
data(sys2)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(sys2)
## alpha.est = 0.3035937, lambda.est = 279.2177754
dmoew(sys2, 0.3035937, 279.2177754, log = FALSE)
pmoew(sys2, 0.3035937, 279.2177754, lower.tail = TRUE, log.p = FALSE)
qmoew(0.25, 0.3035937, 279.2177754, lower.tail=TRUE, log.p = FALSE)
rmoew(50, 0.3035937, 279.2177754)
|
[1] 0.0017740880 0.0016281327 0.0015583356 0.0015056205 0.0015036471
[6] 0.0015099247 0.0015327819 0.0015556915 0.0015603354 0.0015671261
[11] 0.0015718177 0.0016221608 0.0016397212 0.0016800334 0.0017010115
[16] 0.0017468850 0.0017494548 0.0017544473 0.0017639171 0.0017734680
[21] 0.0017777405 0.0017860199 0.0017851250 0.0017838905 0.0017818207
[26] 0.0017781164 0.0017757771 0.0017722889 0.0017664575 0.0017584307
[31] 0.0017544024 0.0017323747 0.0017160090 0.0017114769 0.0016735093
[36] 0.0016307006 0.0016222377 0.0015966366 0.0015778963 0.0014931788
[41] 0.0014930127 0.0014880534 0.0014532617 0.0013693599 0.0013534017
[46] 0.0013337820 0.0012949435 0.0012798096 0.0012478223 0.0010980002
[51] 0.0010749146 0.0010691090 0.0010222275 0.0009988670 0.0009057313
[56] 0.0008472425 0.0008237621 0.0007718294 0.0007359616 0.0007228322
[61] 0.0007115058 0.0006980248 0.0006592591 0.0006574503 0.0005998507
[66] 0.0005957353 0.0005608932 0.0005520965 0.0005262695 0.0004581916
[71] 0.0004379641 0.0004239734 0.0003568001 0.0003403540 0.0003076740
[76] 0.0002832888 0.0002653392 0.0002390814 0.0002340300 0.0002209589
[81] 0.0001969678 0.0001909325 0.0001896057 0.0001832913 0.0001782208
[86] 0.0001598370
[1] 0.01411511 0.01861270 0.02301456 0.03146902 0.04697223 0.05072383
[7] 0.06126334 0.07048159 0.07230446 0.07496280 0.07679908 0.09714745
[13] 0.10479685 0.12428933 0.13600593 0.16892711 0.17128715 0.17614014
[19] 0.18662572 0.20001646 0.20777618 0.24755313 0.25535637 0.26142383
[25] 0.26864461 0.27816793 0.28309014 0.28953002 0.29876656 0.30957098
[31] 0.31443631 0.33710577 0.35126261 0.35491291 0.38233931 0.40879581
[37] 0.41364272 0.42771002 0.43751958 0.47807234 0.47814699 0.48036789
[43] 0.49557502 0.53002875 0.53629111 0.54388241 0.55859006 0.56421588
[49] 0.57593132 0.62823540 0.63599253 0.63793287 0.65345936 0.66110897
[55] 0.69112630 0.70965827 0.71704369 0.73328965 0.74445289 0.74853012
[61] 0.75204418 0.75622331 0.76822531 0.76878492 0.78660096 0.78787426
[67] 0.79866225 0.80138902 0.80940507 0.83064314 0.83699572 0.84140410
[73] 0.86277788 0.86807515 0.87869590 0.88671601 0.89267991 0.90151072
[79] 0.90322567 0.90768997 0.91599403 0.91810789 0.91857405 0.92079999
[85] 0.92259657 0.92918448
[1] 146.4001
[1] 131.80429 205.71750 671.81718 85.25697 29.66341 685.46278
[7] 13.39062 226.26649 96.69232 314.15236 412.73650 668.81192
[13] 53.97690 112.11491 396.86386 271.56845 332.20093 77.01324
[19] 221.35589 499.49443 358.57376 508.27565 420.15996 11.22592
[25] 355.01044 150.85920 201.99224 295.40742 304.01218 992.43779
[31] 525.24908 198.16964 32.47047 651.46052 203.36411 107.85350
[37] 170.15368 283.60068 49.08322 50.40690 368.95876 560.19840
[43] 273.94321 574.80760 300.13962 990.11700 93.09721 628.84056
[49] 2610.31839 16.09373
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.