ks.moee: Test of Kolmogorov-Smirnov for the Marshall-Olkin Extended...

Description Usage Arguments Details Value References See Also Examples

View source: R/MOEE.R

Description

The function ks.moee() gives the values for the KS test assuming an GE with tilt parameter alpha and scale parameter lambda. In addition, optionally, this function allows one to show a comparative graph between the empirical and theoretical cdfs for a specified data set.

Usage

1
2
ks.moee(x, alpha.est, lambda.est, 
    alternative = c("less", "two.sided", "greater"), plot = FALSE, ...)

Arguments

x

vector of observations.

alpha.est

estimate of the parameter alpha

lambda.est

estimate of the parameter lambda

alternative

indicates the alternative hypothesis and must be one of "two.sided" (default), "less", or "greater".

plot

Logical; if TRUE, the cdf plot is provided.

...

additional arguments to be passed to the underlying plot function.

Details

The Kolmogorov-Smirnov test is a goodness-of-fit technique based on the maximum distance between the empirical and theoretical cdfs.

Value

The function ks.moee() carries out the KS test for the MOEE

References

Marshall, A. W., Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika,84(3):641-652.

Marshall, A. W., Olkin, I.(2007). Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. Springer, New York.

See Also

pp.moee for PP plot and qq.moee for QQ plot

Examples

1
2
3
4
5
6
## Load dataset
data(stress)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 75.67982, lambda.est = 1.67576

ks.moee(stress, 75.67982, 1.67576, alternative = "two.sided", plot = TRUE)

reliaR documentation built on May 1, 2019, 9:51 p.m.

Related to ks.moee in reliaR...