# Bob Rigby and Mikis Stasinopoulos
# created April 2017
# beta negative binomial
#----------------------------------------------------------------------------------------
BNB <-function (mu.link ="log", sigma.link="log", nu.link="log")
{
mstats <- checklink("mu.link", "BNB", substitute(mu.link),
c("1/mu^2", "log", "identity"))
dstats <- checklink("sigma.link", "BNB", substitute(sigma.link),
c("inverse", "log", "identity"))
vstats <- checklink("nu.link", "BNB",substitute(nu.link),
c("1/nu^2", "log", "identity"))
structure(
list(family = c("BNB", "Beta Negative Binomial"),
parameters = list(mu = TRUE, sigma = TRUE, nu = TRUE),
nopar = 3,
type = "Discrete",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
dldm = function(y,mu,sigma,nu) #---------------------------
{
m <- (1/sigma) + 1
n <- (mu*nu)/sigma
k <- 1/nu
dldm <- (nu/sigma)*digamma(y+n) + (nu/sigma)*digamma(n+m)-
(nu/sigma)*digamma(n) - (nu/sigma)*digamma(y+n+m+k)
dldm},
d2ldm2 = function(y,mu,sigma,nu) #--------------------------
{
m <- (1/sigma) + 1
n <- (mu*nu)/sigma
k <- 1/nu
dldm <- (nu/sigma)*digamma(y+n) + (nu/sigma)*digamma(n+m)-
(nu/sigma)*digamma(n) - (nu/sigma)*digamma(y+n+m+k)
d2ldm2 <- - dldm * dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2,-1e-15)
d2ldm2
},
dldd = function(y,mu,sigma,nu) #------------------------------
{
m <- (1/sigma) + 1
n <- (mu*nu)/sigma
k <- 1/nu
dldd <- -(mu*nu/sigma^2)*digamma(y+n) - (1/sigma^2)*digamma(m+k) -
(1/sigma^2)*(mu*nu+1)*digamma(n+m)+(mu*nu/sigma^2)*digamma(n)+
(1/sigma^2)*digamma(m)+(1/sigma^2)*(mu*nu+1)*digamma(y+n+m+k)
dldd},
d2ldd2 = function(y,mu,sigma,nu)#--------------------------------
{
m <- (1/sigma) + 1
n <- (mu*nu)/sigma
k <- 1/nu
dldd <- -(mu*nu/sigma^2)*digamma(y+n) - (1/sigma^2)*digamma(m+k) -
(1/sigma^2)*(mu*nu+1)*digamma(n+m)+(mu*nu/sigma^2)*digamma(n)+
(1/sigma^2)*digamma(m)+(1/sigma^2)*(mu*nu+1)*digamma(y+n+m+k)
d2ldd2 <- -dldd*dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2,-1e-15)
d2ldd2},
dldv = function(y,mu,sigma,nu)# -------------------------------
{
m <- (1/sigma) + 1
n <- (mu*nu)/sigma
k <- 1/nu
dldv <- -(1/nu^2)*digamma(y+k) + (mu/sigma)*digamma(y+n) -
(1/nu^2)*digamma(m+k)+(mu/sigma)*digamma(n+m)+
(1/nu^2)*digamma(k)-(mu/sigma)*digamma(n) -
((mu/sigma)-(1/nu^2))*digamma(y+n+m+k)
dldv},
d2ldv2 = function(y,mu,sigma,nu)#------------------------------------
{
m <- (1/sigma) + 1
n <- (mu*nu)/sigma
k <- 1/nu
dldv <- -(1/nu^2)*digamma(y+k) + (mu/sigma)*digamma(y+n) -
(1/nu^2)*digamma(m+k)+(mu/sigma)*digamma(n+m)+
(1/nu^2)*digamma(k)-(mu/sigma)*digamma(n) -
((mu/sigma)-(1/nu^2))*digamma(y+n+m+k)
d2ldv2 <- -dldv*dldv
d2ldv2 <- ifelse(d2ldv2 < -1e-15, d2ldv2,-1e-15)
d2ldv2},
d2ldmdd = function(y,mu,sigma,nu) #---------------------------------
{
m <- (1/sigma) + 1
n <- (mu*nu)/sigma
k <- 1/nu
dldm <- (nu/sigma)*digamma(y+n) + (nu/sigma)*digamma(n+m)-
(nu/sigma)*digamma(n) - (nu/sigma)*digamma(y+n+m+k)
dldd <- -(mu*nu/sigma^2)*digamma(y+n) - (1/sigma^2)*digamma(m+k) -
(1/sigma^2)*(mu*nu+1)*digamma(n+m)+(mu*nu/sigma^2)*digamma(n)+
(1/sigma^2)*digamma(m)+(1/sigma^2)*(mu*nu+1)*digamma(y+n+m+k)
d2ldmdd <- -dldm *dldd
d2ldmdd},
d2ldmdv = function(y,mu,sigma,nu)
{
m <- (1/sigma) + 1
n <- (mu*nu)/sigma
k <- 1/nu
dldm <- (nu/sigma)*digamma(y+n) + (nu/sigma)*digamma(n+m)-
(nu/sigma)*digamma(n) - (nu/sigma)*digamma(y+n+m+k)
dldv <- -(1/nu^2)*digamma(y+k) + (mu/sigma)*digamma(y+n) -
(1/nu^2)*digamma(m+k)+(mu/sigma)*digamma(n+m)+
(1/nu^2)*digamma(k)-(mu/sigma)*digamma(n) -
((mu/sigma)-(1/nu^2))*digamma(y+n+m+k)
d2ldmdv <- -dldm *dldv
d2ldmdv},
d2ldddv = function(y,mu,sigma,nu)#-------------------------------
{
m <- (1/sigma) + 1
n <- (mu*nu)/sigma
k <- 1/nu
dldd <- -(mu*nu/sigma^2)*digamma(y+n) - (1/sigma^2)*digamma(m+k) -
(1/sigma^2)*(mu*nu+1)*digamma(n+m)+(mu*nu/sigma^2)*digamma(n)+
(1/sigma^2)*digamma(m)+(1/sigma^2)*(mu*nu+1)*digamma(y+n+m+k)
dldv <- -(1/nu^2)*digamma(y+k) + (mu/sigma)*digamma(y+n) -
(1/nu^2)*digamma(m+k)+(mu/sigma)*digamma(n+m)+
(1/nu^2)*digamma(k)-(mu/sigma)*digamma(n) -
((mu/sigma)-(1/nu^2))*digamma(y+n+m+k)
d2ldddv <- -dldd *dldv
d2ldddv
},
G.dev.incr = function(y,mu,sigma,nu,...) -2*dBNB(y, mu, sigma, nu, log=TRUE),
rqres = expression(
rqres(pfun="pBNB", type="Discrete", ymin=0, y=y, mu=mu, sigma=sigma, nu=nu)
),
mu.initial = expression(mu<- (y+mean(y))/2 ),
sigma.initial = expression(
sigma <- rep( max( ((var(y)-mean(y))/(mean(y)^2)),0.1),length(y))),
nu.initial = expression({ nu <- rep(.1,length(y)) }),
mu.valid = function(mu) all(mu > 0) ,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) TRUE,
y.valid = function(y) all(y >= 0),
mean = function(mu, sigma, nu) mu,
variance = function(mu, sigma, nu) ifelse(sigma < 1, mu * (1 + mu * nu) * (1 + sigma / nu) / (1 - sigma), Inf)
),
class = c("gamlss.family","family"))
}
#----------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------------
dBNB<-function(x, mu=1, sigma=1, nu=1, log=FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(nu <= 0) ) stop(paste("nu must be greater than 0 ", "\n", ""))
if (any(x < 0) ) stop(paste("x must be >=0", "\n", ""))
ly <- max(length(x),length(mu),length(sigma),length(nu))
x <- rep(x, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
nu <- rep(nu, length = ly)
m <- (1/sigma) + 1
n <- (mu*nu)/sigma
k <- 1/nu
logL <- lbeta(x+n, m+k)-lbeta(n,m)-lgamma(x+1)-lgamma(k)+lgamma(x+k)
lik <- if (log) logL else exp(logL)
lik
}
#----------------------------------------------------------------------------------------
#-----------------------------------------------
pBNB <- function(q, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(nu <= 0) ) stop(paste("nu must be greater than 0 ", "\n", ""))
if (any(q < 0) ) stop(paste("q must be >=0", "\n", ""))
ly <- max(length(q),length(mu),length(sigma),length(nu))
q <- rep(q, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
nu <- rep(nu, length = ly)
fn <- function(q, mu, sigma, nu) sum(dBNB(0:q, mu=mu, sigma=sigma, nu=nu))
Vcdf <- Vectorize(fn)
cdf <- Vcdf(q=q, mu=mu, sigma=sigma, nu=nu)
cdf <- if(lower.tail==TRUE) cdf else 1-cdf
cdf <- if(log.p==FALSE) cdf else log(cdf)
cdf
}
#----------------------------------------------------------------------------------------
qBNB <- function(p, mu=1, sigma=1, nu=1, lower.tail = TRUE, log.p = FALSE,
max.value = 10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(p < 0) | any(p > 1.0001)) stop(paste("p must be between 0 and 1", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
ly <- max(length(p),length(mu),length(sigma),length(nu))
p <- rep(p, length = ly)
QQQ <- rep(0,length = ly)
nsigma <- rep(sigma, length = ly)
nmu <- rep(mu, length = ly)
nnu <- rep(nu, length = ly)
for (i in seq(along=p))
{
cumpro <- 0
if (p[i]+0.000000001 >= 1) QQQ[i] <- Inf
else
{
for (j in seq(from = 0, to = max.value))
{
cumpro <- pBNB(j, mu = nmu[i], sigma = nsigma[i], nu = nnu[i], log.p = FALSE)
# else cumpro+dBNB(j, mu = nmu[i], sigma = nsigma[i], nu = nnu[i], log = FALSE)# the above is faster
QQQ[i] <- j
if (p[i] <= cumpro ) break
}
}
}
QQQ
}
#----------------------------------------------------------------------------------------
rBNB <- function(n, mu=1, sigma=1, nu=1, max.value = 10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qBNB(p, mu=mu, sigma=sigma, nu=nu, max.value = max.value )
r
}
#----------------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.