# Linear quadratic family that assumes the following relation for the *variance*
# of the normal distribution Var = mu*(1+s*mu)
# regression on mu and on the sigma (log and identity links)
LQNO <-function (mu.link ="log", sigma.link="log")
{
mstats <- checklink( "mu.link", "Normal", substitute(mu.link),
c("log","identity"))
dstats <- checklink("sigma.link", "Normal", substitute(sigma.link),
c("log","identity"))
structure(
list(family = c("LQNO", "Normal with Linear Quadratic relationship between mean and variance"),
parameters = list(mu=TRUE,sigma=TRUE),
nopar = 2,
type = "Continuous",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
dldm = function(y,mu,sigma)
{
c0 <- (1+mu*sigma)
c1 <- sigma/c0
c2 <- (y-mu)/(mu*c0)
-0.5*(1/mu+c1)+c2+0.5*(y-mu)*c1*c2+0.5*c2*c2*c0
},
d2ldm2 = function(mu,sigma)
{
-(1 + 2*mu*(1 + 2*sigma)*(1 + mu*sigma))/(2.*(mu*(1 + mu*sigma))^2)
},
dldd = function(y,mu,sigma)
{
c0 <- (1+mu*sigma)
0.5*( ((y-mu)/c0)^2-mu/c0)
},
d2ldd2 = function(mu,sigma)
{
-mu^2/(2.*(1 + mu*sigma)^2)
},
d2ldmdd = function(mu,sigma)
{
-(1 + 2*mu*sigma)/(2.*(1 + mu*sigma)^2)
},
G.dev.incr = function(y,mu,sigma,...) -2*dLQNO(y,mu,sigma,log=TRUE),
rqres = expression(rqres(pfun="pLQNO", type="Continuous", y=y, mu=mu, sigma=sigma)),
mu.initial = expression({ mu <- abs((y+mean(y))/2) }),
sigma.initial = expression({sigma <- rep(abs((var(y)/mean(y)-1))/mean(y),length(y))}),
mu.valid = function(mu) TRUE ,
sigma.valid = function(sigma) all(sigma > 0),
y.valid = function(y) TRUE
),
class = c("gamlss.family","family"))
}
#----------------------------------------------------------------------------------------
dLQNO<-function(x, mu=1, sigma=1, log=FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
fy <- dnorm(x, mean=mu, sd=sqrt(mu*(1+sigma*mu)), log=log)
fy
}
#----------------------------------------------------------------------------------------
pLQNO <- function(q, mu=1, sigma=1, lower.tail = TRUE, log.p = FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
cdf <- pnorm(q, mean=mu, sd=sqrt(mu*(1+sigma*mu)), lower.tail = lower.tail, log.p = log.p)
cdf
}
#----------------------------------------------------------------------------------------
qLQNO <- function(p, mu=1, sigma=1, lower.tail = TRUE, log.p = FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (any(p < 0)|any(p > 1)) stop(paste("p must be between 0 and 1", "\n", ""))
q <- qnorm(p, mean=mu, sd=sqrt(mu*(1+sigma*mu)), lower.tail = lower.tail )
q
}
rLQNO <- function(n, mu=1, sigma=1)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
r <- rnorm(n, mean=mu, sd=sqrt(mu*(1+sigma*mu)))
r
}
#----------------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.