# Monday, March 29, 2004 at 16:50
# the first derivatives squares have been used here
SEP <- function (mu.link="identity", sigma.link="log", nu.link ="identity", tau.link="log")
{
mstats <- checklink( "mu.link", "Skew Exponential Power", substitute(mu.link),
c("1/mu^2", "log", "identity"))
dstats <- checklink("sigma.link", "Skew Exponential Power", substitute(sigma.link),
c("inverse", "log", "identity"))
vstats <- checklink( "nu.link", "Skew Exponential Power", substitute(nu.link),
c("1/nu^2", "log", "identity"))
tstats <- checklink( "tau.link", "Skew Exponential Power", substitute(tau.link),
c("1/tau^2", "log", "identity"))
structure(
list(family = c("SEP", "Skew Exponential Power"),
parameters = list(mu=TRUE, sigma=TRUE, nu=TRUE, tau=TRUE),
nopar = 4,
type = "Continuous",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
tau.link = as.character(substitute(tau.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
tau.linkfun = tstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
tau.linkinv = tstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
tau.dr = tstats$mu.eta,
dldm = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdz <- (abs(z)^((tau/2)-1))*nu*(sqrt(tau/2))
dldm <- -(dnorm(w)/pnorm(w))*dwdz/sigma + sign(z)*(abs(z)^(tau-1))/sigma
dldm
},
d2ldm2 = function(y,mu,sigma,nu,tau){
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdz <- (abs(z)^((tau/2)-1))*nu*(sqrt(tau/2))
dldm <- -(dnorm(w)/pnorm(w))*dwdz/sigma + sign(z)*(abs(z)^(tau-1))/sigma
d2ldm2 <- -dldm*dldm
d2ldm2
},
dldd = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdz <- (abs(z)^((tau/2)-1))*nu*(sqrt(tau/2))
dldd <- -(dnorm(w)/pnorm(w))*dwdz*z/sigma + ((abs(z)^(tau))-1)/sigma
dldd
} ,
d2ldd2 = function(y,mu,sigma,nu,tau){
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdz <- (abs(z)^((tau/2)-1))*nu*(sqrt(tau/2))
dldd <- -(dnorm(w)/pnorm(w))*dwdz*z/sigma + ((abs(z)^(tau))-1)/sigma
d2ldd2 <- -dldd*dldd
d2ldd2
},
dldv = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdv <- w/nu
dldv <- (dnorm(w)/pnorm(w))*dwdv
dldv
} ,
d2ldv2 = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdv <- w/nu
dldv <- (dnorm(w)/pnorm(w))*dwdv
d2ldv2 <- -dldv*dldv
d2ldv2
},
dldt = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdt <- (log(abs(z))-1/tau)*w/2
dldt <- (dnorm(w)/pnorm(w))*dwdt
dldt <- dldt+(log(tau)+tau-1+digamma(1/tau)-tau*((abs(z))^tau)*log(abs(z))+((abs(z))^tau))/(tau*tau)
dldt
} ,
d2ldt2 = function(y,mu,sigma,nu,tau)
{
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdt <- (log(abs(z))-1/tau)*w/2
dldt <- (dnorm(w)/pnorm(w))*dwdt
dldt <- dldt+(log(tau)+tau-1+digamma(1/tau)-tau*((abs(z))^tau)*log(abs(z))+((abs(z))^tau))/(tau*tau)
d2ldt2 <- -dldt*dldt
d2ldt2
},
d2ldmdd = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdz <- (abs(z)^((tau/2)-1))*nu*(sqrt(tau/2))
dldm <- -(dnorm(w)/pnorm(w))*dwdz/sigma + sign(z)*(abs(z)^(tau-1))/sigma
dldd <- -(dnorm(w)/pnorm(w))*dwdz*z/sigma + ((abs(z)^(tau))-1)/sigma
d2ldmdd <- -(dldm*dldd)
d2ldmdd
},
d2ldmdv = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdz <- (abs(z)^((tau/2)-1))*nu*(sqrt(tau/2))
dldm <- -(dnorm(w)/pnorm(w))*dwdz/sigma + sign(z)*(abs(z)^(tau-1))/sigma
dwdv <- w/nu
dldv <- (dnorm(w)/pnorm(w))*dwdv
d2ldmdv <- -(dldm*dldv)
d2ldmdv
},
d2ldmdt = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdz <- (abs(z)^((tau/2)-1))*nu*(sqrt(tau/2))
dldm <- -(dnorm(w)/pnorm(w))*dwdz/sigma + sign(z)*(abs(z)^(tau-1))/sigma
dwdt <- (log(abs(z))-1/tau)*w/2
dldt <- (dnorm(w)/pnorm(w))*dwdt
dldt <- dldt+(log(tau)+tau-1+digamma(1/tau)-tau*((abs(z))^tau)*log(abs(z))+((abs(z))^tau))/(tau*tau)
d2ldmdt <- -(dldm*dldt)
d2ldmdt
},
d2ldddv = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdz <- (abs(z)^((tau/2)-1))*nu*(sqrt(tau/2))
dldd <- -(dnorm(w)/pnorm(w))*dwdz*z/sigma + ((abs(z)^(tau))-1)/sigma
dwdv <- w/nu
dldv <- (dnorm(w)/pnorm(w))*dwdv
d2ldddv <- -(dldd*dldv)
d2ldddv
},
d2ldddt = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdz <- (abs(z)^((tau/2)-1))*nu*(sqrt(tau/2))
dldd <- -(dnorm(w)/pnorm(w))*dwdz*z/sigma + ((abs(z)^(tau))-1)/sigma
dwdt <- (log(abs(z))-1/tau)*w/2
dldt <- (dnorm(w)/pnorm(w))*dwdt
dldt <- dldt+(log(tau)+tau-1+digamma(1/tau)-tau*((abs(z))^tau)*log(abs(z))+((abs(z))^tau))/(tau*tau)
d2ldddt <- -(dldd*dldt)
d2ldddt
},
d2ldvdt = function(y,mu,sigma,nu,tau) {
z <- (y-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
dwdv <- w/nu
dldv <- (dnorm(w)/pnorm(w))*dwdv
dwdt <- (log(abs(z))-1/tau)*w/2
dldt <- (dnorm(w)/pnorm(w))*dwdt
dldt <- dldt+(log(tau)+tau-1+digamma(1/tau)-tau*((abs(z))^tau)*log(abs(z))+((abs(z))^tau))/(tau*tau)
d2ldvdt <- -(dldv*dldt)
d2ldvdt
},
G.dev.incr = function(y,mu,sigma,nu,tau,...)
{
-2*dSEP(y,mu,sigma,nu,tau,log=TRUE)
} ,
rqres = expression(
rqres(pfun="pSEP", type="Continuous", y=y, mu=mu,
sigma=sigma, nu=nu, tau=tau)) ,
mu.initial = expression(mu <- (y+mean(y))/2), #(y+mean(y))/2),# rep(mean(y),length(y))
sigma.initial = expression(sigma <- rep(sd(y)/4, length(y))),
nu.initial = expression(nu <- rep(0.1, length(y))),
tau.initial = expression(tau <-rep(1.6, length(y))),
mu.valid = function(mu) TRUE,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) TRUE ,
tau.valid = function(tau) all(tau > 0),
y.valid = function(y) TRUE
),
class = c("gamlss.family","family"))
}
#------------------------------------------------------------------------------------------
dSEP <- function(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
{
if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(tau < 0)) stop(paste("tau must be positive", "\n", ""))
z <- (x-mu)/sigma
w <- sign(z)*(abs(z)^(tau/2))*nu*(sqrt(2/tau))
loglik <- log(pnorm(w)) - (abs(z)^(tau))/tau - log(sigma) - lgamma(1/tau) - ((1/tau)-1)*log(tau)
if(log==FALSE) ft <- exp(loglik) else ft <- loglik
ft
}
#------------------------------------------------------------------------------------------
pSEP <- function(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
{ if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(tau < 0)) stop(paste("tau must be positive", "\n", ""))
lp <- pmax.int(length(q), length(mu), length(sigma), length(nu), length(tau))
q <- rep(q, length = lp)
sigma <- rep(sigma, length = lp)
mu <- rep(mu, length = lp)
nu <- rep(nu, length = lp)
tau <- rep(tau, length = lp)
cdf <- rep(0, length = lp)
for (i in 1:lp)
{
cdf[i] <- integrate(function(x)
dSEP(x, mu = mu[i], sigma = sigma[i], nu = nu[i], tau = tau[i]), -Inf, q[i] )$value #ds br 7-10-11
}
if(lower.tail==TRUE) cdf <- cdf else cdf <- 1-cdf
if(log.p==FALSE) cdf <- cdf else cdf <- log(cdf)
cdf
}
#------------------------------------------------------------------------------------------
qSEP <- function(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE,
lower.limit = mu-5*sigma,
upper.limit = mu+5*sigma)
{
#---Golded section search--------------------------------------------
find.q.from.p <- function(p, mu, sigma, nu, tau,
lower= lower.limit,
upper = upper.limit)
{
usemode <- function(q,p)
{
np <- pSEP(q , mu = mu, sigma = sigma, nu = nu, tau = tau )
fun <- (np-p)^2
fun
}
tol <- 0.000001
r <- 0.61803399
b <- r*lower + (1-r)*upper
lo <- lower
up <- upper
w1 <- TRUE
val1 <- if(up-b > b-lo) b else b-(1-r)*(b-lo)
val2 <- if(up-b > b-lo) b+(1-r)*(up-b) else b
f1 <- usemode(val1,p)
f2 <- usemode(val2,p)
while(w1)
{ if(f2 < f1) { lo <- val1
val1 <- val2
val2 <- r*val1+(1-r)*up
f1 <- f2
f2 <- usemode(val2,p)
}
else { up <- val2
val2 <- val1
val1 <- r*val2+(1-r)*lo
f2 <- f1
f1 <- usemode(val1,p)
}
w1 <- abs(up-lo) > tol*(abs(val1)+abs(val2))
}
q <- if(f1<f2) val1 else val2
q
}
#-----------------------------------------------------------------
if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(tau < 0)) stop(paste("tau must be positive", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (any(p <= 0)|any(p >= 1)) stop(paste("p must be between 0 and 1", "\n", ""))
if (lower.tail==TRUE) p <- p else p <- 1-p
lp <- pmax.int(length(p), length(mu), length(sigma), length(nu), length(tau))
p <- rep(p, length = lp)
sigma <- rep(sigma, length = lp)
mu <- rep(mu, length = lp)
nu <- rep(nu, length = lp)
tau <- rep(tau, length = lp)
upper <- rep(upper.limit, length = lp )
lower <- rep(lower.limit, length = lp )
q <- rep(0,lp)
for (i in 1:lp)
{
q[i] <- find.q.from.p(p[i], mu = mu[i], sigma = sigma[i],
nu = nu[i], tau = tau[i],
upper = upper[i],
lower = lower[i])
if (q[i]>=upper[i]) warning("q is at the upper limit, increase the upper.limit")
if (q[i]<=lower[i]) warning("q is at the lower limit, decrease the lower.limit")
}
q
}
#------------------------------------------------------------------------------------------
rSEP <- function(n, mu=0, sigma=1, nu=0, tau=2)
{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qSEP(p, mu = mu,sigma = sigma, nu = nu,tau = tau)
r
}
#-----------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.