#---------------------------#
#---- YULE DISTRIBUTION ----#
#---------------------------#
#------------------------------------------------------------------
#Fitting function
YULE<-function (mu.link = "log")
{
mstats <- checklink(which.link="mu.link",
which.dist="Yule", link=substitute(mu.link),
link.List="log")
#One of these for each parameter to specify which link to use.
structure(list(family = c("YULE", "Yule"),
parameters = list(mu = TRUE),
nopar = 1,
type = "Discrete",
mu.link = as.character(substitute(mu.link)),
mu.linkfun = mstats$linkfun,
mu.linkinv = mstats$linkinv,
mu.dr = mstats$mu.eta,
dldm = function(y, mu){
lambda <- (mu+1)/mu
dldm <- (digamma(lambda+1) - digamma(lambda+y+2)+(1/lambda))*(-1/(mu^2))
dldm
#browser()
},
d2ldm2 = function(y, mu){
# d2ldm2 <- 1/(mu*(mu-1))
lambda <- (mu+1)/mu
dldm <- (digamma(lambda+1) - digamma(lambda+y+2)+(1/lambda))*(-1/(mu^2))
d2ldm2 <- -dldm^2
d2ldm2
},
G.dev.incr = function(y, mu, ...)
-2 * dYULE(y, mu = mu, log = TRUE),
rqres = expression(rqres(pfun = "pYULE", type = "Discrete", ymin = 0, y = y, mu = mu)),
mu.initial = expression(mu <- rep(mean(y), length(y))),
mu.valid = function(mu) all(mu > 0) ,
y.valid = function(y) all(y >=0),
mean = function(mu) mu,
variance = function(mu) ifelse(mu < 1, mu * (mu+1)^2 * (1-mu)^-1,Inf)
),
class = c("gamlss.family", "family"))
}
#------------------------------------------------------------------
# pdf
dYULE<-function (x, mu = 2, log = FALSE)
{
if (any(mu < 0))
stop(paste("mu must be > 0)", "\n", ""))
if (any(x < 0))
stop(paste("x must be >=0", "\n", ""))
lx <- max(length(x), length(mu))
mu <- rep(mu, length = lx)
lambda <- (mu+1)/mu
logfx <- lbeta(lambda+1, x+1) - lbeta(lambda, 1)
if (log==FALSE) logfx <- exp(logfx)
logfx
}
#------------------------------------------------------------------
#Cumulative density function
pYULE<-function (q, mu = 2, lower.tail = TRUE, log.p = FALSE)
{
if (any(mu < 0)) stop(paste("mu must be > 0", "\n", ""))
if (any(q < 0)) stop(paste("q must be >=0", "\n", ""))
ly <- max(length(q), length(mu))
q <- rep(q, length = ly)
mu <- rep(mu, length = ly)
# cdf1 <- 1-((gamma(2+(1/mu))*gamma(2+q))/gamma(3+(1/mu)+q))
fn <- function(q, mu) sum(dYULE(0:q, mu=mu))
Vcdf <- Vectorize(fn)
cdf <- Vcdf(q=q, mu=mu)
if (lower.tail == TRUE)
cdf <- cdf
else cdf = 1 - cdf
if (log.p == TRUE) cdf <- -(lgamma(2+(1/mu))+lgamma(2+q) -
gamma(3+(1/mu)+q))
cdf
}
#Quantile function
qYULE<-function (p, mu = 2, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
{
if (any(p < 0) | any(p > 1.0001))
stop(paste("p must be in [0,1]", "\n", ""))
if (any(mu < 0))
stop(paste("mu must be > 0)", "\n", ""))
if (lower.tail) p <- p
else p <- 1 - p
ly <- max(length(p), length(mu))
p <- rep(p, length = ly)
QQQ <- rep(0, length = ly)
mu <- rep(mu, length = ly)
for (i in seq(along = p)) {
cumpro <- 0
if (p[i] + 1e-09 >= 1)
QQQ[i] <- Inf
else {
for (j in seq(from = 0, to = max.value)) {
cumpro <- pYULE(j, mu= mu[i])
QQQ[i] <- j
if (p[i] <= cumpro)
break
}
}
}
QQQ
}
#Random Generating Function
rYULE<- function(n, mu=2)
{
if (any(mu < 0))
stop(paste("mu must be > 0)", "\n", ""))
if (any(n <= 0))
stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qYULE(p, mu=mu)
r
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.