# The inflated inverse Gaussian distribution
# created by Bob Rigby and Mikis Stasinopoulos, suggested by Gillian Heller
# ---------------------------------------------------------------------------------------
ZAIG <- function (mu.link ="log", sigma.link="log", nu.link ="logit")
{
mstats <- checklink("mu.link", "ZAIG", substitute(mu.link), c("inverse", "log", "identity", "own"))
dstats <- checklink("sigma.link", "ZAIG", substitute(sigma.link), c("inverse", "log", "identity", "own"))
vstats <- checklink("nu.link", "ZAIG", substitute(nu.link), c("logit", "probit", "cloglog", "cauchit", "log", "own"))
structure(
list(family = c("ZAIG", "Zero adjusted IG"),
parameters = list(mu=TRUE, sigma=TRUE, nu=TRUE),
nopar = 3,
type = "Mixed",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
dldm = function(y,mu,sigma) ifelse(y==0,0,(y-mu)/((sigma^2)*(mu^3))),
d2ldm2 = function(y,mu,sigma) ifelse(y==0,0,-1/((mu^3)*(sigma^2))),
dldd = function(y,mu,sigma) ifelse(y==0,0,(-1/sigma) +((y-mu)^2)/(y*(sigma^3)*(mu^2))),
d2ldd2 = function(y,sigma) ifelse(y==0,0,-2/(sigma^2)),
dldv = function(y,nu) ifelse(y==0,1/nu,-1/(1-nu)),
d2ldv2 = function(nu) -1/(nu*(1-nu)) ,
d2ldmdd = function(y) rep(0,length(y)),
d2ldmdv = function(y) rep(0,length(y)),
d2ldddv = function(y) rep(0,length(y)),
G.dev.incr = function(y,mu,sigma,nu,...)
-2*dZAIG(y,mu,sigma,nu,log=TRUE),
rqres = expression(rqres(pfun="pZAIG", type="Mixed", mass.p=0,
prob.mp=nu, y=y, mu=mu, sigma=sigma, nu=nu)),
mu.initial = expression(mu <- (y+mean(y))/2),
sigma.initial = expression(sigma <- rep(.5,length(y))),
nu.initial = expression( nu <- rep(0.5, length(y))),
mu.valid = function(mu) TRUE ,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) all(nu > 0) && all(nu < 1),
y.valid = function(y) all(y>=0),
mean = function(mu, sigma, nu) (1 - nu) * mu,
variance = function(mu, sigma, nu) (1 - nu) * mu^2 * (nu+mu*sigma^2)
),
class = c("gamlss.family","family"))
}
#----------------------------------------------------------------------------------------
dZAIG<-function(x, mu=1, sigma=1, nu=.1, log=FALSE)
{ if (any(mu < 0)) stop(paste("mu must be positive", "\n", ""))
if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(x < 0)) stop(paste("x must be positive", "\n", ""))
log.lik <- ifelse(x==0, log(nu), log(1-nu)+(-0.5*log(2*pi)-log(sigma)-(3/2)*log(x)-((x-mu)^2)/(2*sigma^2*(mu^2)*x)))
if(log==FALSE) fy <- exp(log.lik) else fy <- log.lik
fy
}
#----------------------------------------------------------------------------------------
pZAIG <- function(q, mu=1, sigma=1, nu=0.1, lower.tail = TRUE, log.p = FALSE)
{ if (any(mu < 0)) stop(paste("mu must be positive", "\n", ""))
if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(q < 0)) stop(paste("y must be positive", "\n", ""))
cdf1 <- pnorm(((q/mu)-1)/(sigma*sqrt(q)))
cdf2 <- exp(2/(mu*sigma^2))*pnorm((-((q/mu)+1))/(sigma*sqrt(q)))
cdf <- cdf1+ cdf2
## the problem with this approximation is that it is not working with
## small sigmas and produce NA's. So here it is a solution
if (any(is.na(cdf)))
{
index <- seq(along=q)[is.na(cdf)]
for (i in index)
{
cdf[i] <- integrate(function(x)
dIG(x, mu = mu[i], sigma = sigma[i], log=FALSE), 0.001, q[i] )$value
}
}
cdf <- ifelse((q==0), nu, nu+(1-nu)*cdf)
if(lower.tail==TRUE) cdf <- cdf else cdf <- 1-cdf
if(log.p==FALSE) cdf <- cdf else cdf <- log(cdf)
cdf
}
#----------------------------------------------------------------------------------------
qZAIG <- function(p, mu=1, sigma=1, nu=0.1, lower.tail = TRUE, log.p = FALSE)
{
#-----------------------------------------------------------------
#-----------------------------------------------------------------
if (any(mu <= 0)) stop(paste("mu must be positive", "\n", ""))
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(nu < 0)|any(nu > 1)) stop(paste("nu must be between 0 and 1", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
if (any(p < 0)|any(p >= 1)) stop(paste("p must be between 0 and 1", "\n", ""))
lp <- max(length(p),length(mu),length(sigma),length(nu))
p <- rep(p, length = lp)
sigma <- rep(sigma, length = lp)
mu <- rep(mu, length = lp)
nu <- rep(nu, length = lp)
q <- rep(0,lp)
p_nu <- ifelse((p - nu)/(1 - nu) <= 0, 0.5, (p - nu)/(1 - nu))
q <- ifelse((p > nu), qIG(p_nu, mu=mu, sigma=sigma), 0)
# compute quantiles
if (lower.tail == TRUE)
q <- q
else q <- 1 - q
if (log.p == FALSE)
q <- q
else q <- log(q)
q
}
#-----------------------------------------------------------------------------------------
rZAIG <- function(n, mu=1, sigma=1, nu=0.1, ...)
{
if (any(mu <= 0)) stop(paste("mu must be positive", "\n", ""))
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(nu < 0)|any(nu > 1)) stop(paste("nu must be between 0 and 1", "\n", ""))
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qZAIG(p,mu=mu,sigma=sigma, nu = nu, ...)
r
}
#----------------------------------------------------------------------------------------
plotZAIG <- function( mu =5 , sigma=1, nu = 0.1, from = 0, to=10, n = 101, ...)
{
y = seq(from=0.001, to=to, length.out=n )
pdf<- dZAIG(y, mu = mu ,sigma = sigma, nu = nu)
pr0<-c(dZAIG(0, mu=mu ,sigma=sigma, nu=nu))
po<-c(0)
plot(pdf~y, main="Zero adjusted IG", ylim=c(0,max(pdf,pr0)), type="l")
points(po,pr0,type="h")
points(po,pr0,type="p", col="blue")
}
#----------------------------------------------------------------------------------------
meanZAIG <- function(obj)
{
if ( obj$family[1]!="ZAIG") stop("the object do not have a ZAIG distribution")
meanofY<-(1-fitted(obj,"nu"))*fitted(obj,"mu")
meanofY
}
#----------------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.